用户名: 密码: 验证码:
多孔炭材料设计合成及电化学储能应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and synthesis of porous carbon materials for energy storage
  • 作者:张向倩 ; 何斌 ; 董晓玲 ; 叶成玉 ; 陆安慧
  • 英文作者:ZHANG Xiangqian;HE Bin;DONG Xiaoling;YE Chengyu;LU Anhui;School of Chemical Engineering, Dalian University of Technology;
  • 关键词:多孔炭 ; 孔结构 ; 形貌 ; 电极材料 ; 电化学储能
  • 英文关键词:porous carbon;;pore structure;;morphology;;electrode materials;;electrochemical energy storage
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:大连理工大学化工学院;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金(21473021);; 长江学者奖励计划(T2015036)
  • 语种:中文;
  • 页:HGJZ201901034
  • 页数:17
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:411-427
摘要
多孔炭材料具有导电性好、结构稳定、资源丰富、价格低廉的天然优势,既可直接作为电极材料,构建炭基电化学储能器件,又可与非炭电活性材料复合,起到传输电子、缓冲体积膨胀及调节界面反应的作用,在电化学储能器件中一直发挥着不可或缺的作用。结合本文作者课题组的研究工作,本文总结了多孔炭制备及孔结构和形貌的调控方法,分析了各方法的优缺点;并以超级电容器、锂离子/钠离子电池和锂硫电池为代表,阐述了多孔炭材料在电化学储能领域的作用及应用研究现状,讨论了电化学储能器件对多孔炭材料的结构与性能要求,指出了多孔炭在电化学储能应用中存在的局限性,并对多孔炭在这些储能领域的研究和发展趋势做出展望。
        Porous carbon materials have attracted great attention due to their advantages of adjust ablepore structure, superior chemical stability and outstanding electron accessibility, which have been made agreat research progress in the field of energy storage. Here, combined with the research work of our group,we summarize the synthetic method and method principles of the pore structure design. The research progress of porous carbon with different morphology, such as carbon nanospheres, carbon nanofibers,carbon sheets, monolithic carbon is briefly introduced. Moreover, this article summarizes the application of porous carbon materials in the field of electrochemical energy storage(supercapacitors, lithium ion/sodium ion batteries, lithium-sulfur batteries, etc.) and point out the disadvantages of porous carbon materials for energy storage. Finally, we propose some important aspects for the future development of porous carbon applied for energy storage.
引文
[1] CANDELARIA S L, SHAO Y Y, ZHOU W, et al.Nanostructuredcarbon for energy storage and conversion[J]. Nano Energy, 2012,1:195-220.
    [2] LU A H, HAO G P, SUN Q, et al.Chemical synthesis of carbonmaterials with intriguing nanostructure and morphology[J].Macromol. Chem. Phys., 2012, 213:1107-1131.
    [3] DAWSON E A, PARKES G M B, Barnes P A, et al. Aninvestigation of the porosity of carbons prepared by constant rateactivation in air[J].Carbon, 2003, 41:571-578.
    [4] WANG H L, GAO Q M, HU J. High hydrogen storage capacity ofporous carbons prepared by using activated carbon[J]. J. Am.Chem. Soc., 2009, 131(20):7016-7022.
    [5] WU X Y, SHI Z Q, TJANDRA R, et al. Nitrogen-enriched porouscarbon nanorods templated by cellulose nanocrystals as highperformance supercapacitor electrodes[J]. J. Mater. Chem. A,2015, 3:23768-23777.
    [6] HE X J, LI X J, MA H, et al. ZnO template strategy for thesynthesis of 3D interconnected graphene nanocapsules from coaltar pitch as supercapacitor electrode materials[J]. J. PowerSources, 2017, 340:183-191.
    [7] SUN F, LIU X Y, WU H B, et al. In situ high-level nitrogendoping into carbon nanospheres and boosting of capacitive chargestorage in both anode and cathode for a high-energy 4.5V full-carbon lithium-ion capacitor[J]. Nano Lett., 2018, 18:3368-3376.
    [8] TANG J, LIU J, LI C L, et al. Synthesis of nitrogen-dopedmesoporous carbon spheres with extra large pores throughassembly of diblock copolymer micelles[J]. Angew. Chem. Int.Ed., 2015, 54:588-593.
    [9] QIAN D, LEI C, WANG E M, et al. A method for creatingmicroporous carbon materials with excellent CO2-adsorptioncapacity and selectivity[J]. Chem. Sus. Chem., 2014, 7:291-298.
    [10] SUN Q, LI W C, LU A H. Insight into structure-dependent self-activation mechanism in a confined nanospace of core-shellnanocomposites[J]. Small, 2013, 9:2086-2090.
    [11] CAO X H, TAN C L, SINDOROB M, et al. Hybrid micro-/nano-structures derived from metal-organic frameworks:preparationand applications in energy storage and conversion[J]. Chem. Soc.Rev., 2017, 46:2660-2677.
    [12]王焕磊,高秋明.多孔碳材料的模板法制备、活化处理及储能应用[J].高等学校化学学报, 2011, 32(3):462-470.WANG H L, GAO Q M. Template synthesis, activation andenergy storage application of porous carbon materials[J]. ChemicalJournal of Chinese Universities, 2011, 32(3):462-470.
    [13] XIE X Y, HE X J, SHAO X L, et al. Synthesis of layeredmicroporous carbons from coal tar by directing, space-confinementand self-sacrificed template strategy for supercapacitors[J].Electrochimica Acta, 2017, 246:634-642.
    [14] WANG J C, KASKEL S. KOH activation of carbon-basedmaterials for energy storage[J]. J. Mater. Chem., 2012, 22:23710-23725.
    [15] SEVILLA M, MOKAYA R. Energy storage applications ofactivated carbons:supercapacitors and hydrogen storage[J].Energy Environ. Sci., 2014, 7:1250-1280.
    [16] GONG Y N, LI D L, LUO C Z, et al. Highly porous graphiticbiomass carbon as advanced electrode materials forsupercapacitors[J]. Green Chem., 2017, 19:4132-4140.
    [17]传秀云,周述慧.模板法合成中孔炭材料[J].新型炭材料,2011, 26(2):151-160.CHUAN X Y, ZHOU S H. Preparation of mesoporous carbons by atemplate method[J]. New Carbon Materials, 2011, 26(2):151-160.
    [18] RYOO R, JOO S H, JUN S N. Synthesis of highly ordered carbonmolecular sieves via template-mediated structural transformation[J]. The Journal of Physical Chemistry B, 1999, 103(37):7743-7746.
    [19] NISHIHARA H, YANG Q H, HOU P X, et al. A possiblebuckybowl-like structure of zeolite templated carbon[J]. Carbon,2009, 47:1220-1230.
    [20] KIM K, LEE T, KWON Y, et al. Lanthanum-catalyse synthesis ofmicroporous 3D graphene-like carbons in a zeolite template[J].Nature, 2016, 535:131-135.
    [21] LI W, LIU J, ZHAO D. Mesoporous materials for energyconversion and storage devices[J]. Nat. Rev. Mater., 2016, 1:16023.
    [22] LIANG C D, HONG K L, GEORGES A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of blockcopolymers[J]. Angewandte Chemie International Edition, 2004,43:5785-5789.
    [23] LIU J, YANG T Y, WANG D W, et al. A facile soft-templatesynthesis of mesoporous polymeric and carbonaceous nanospheres[J]. Nature Communications, 2013, 4:2798.
    [24] ZHANG F Q, MENG Y, GU D, et al. An aqueous cooperativeassembly route to synthesize ordered mesoporous carbons withcontrolled structures and morphology[J]. Chemistry of Materials,2006, 18(22):5279-5288.
    [25] WEI J, SUN Z K, LUO W, et al. New insight into the synthesis oflarge-pore ordered mesoporous materials[J]. J. Am. Chem. Soc.,2017, 139(5):1706–1713.
    [26] TANG J, LIU J, LI C L, et al. Synthesis of nitrogen-dopedmesoporous carbon spheres with extra-large pores throughassembly of diblock copolymer micelles[J]. Angew. Chem. Int.Ed., 2015, 54:588-593.
    [27] ZHANG X Q, SUN Q, DONG W, et al. Synthesis of superiorcarbon nanofibers with large aspect ratio and tunable porosity forelectrochemical energy storage[J]. J. Mater. Chem. A, 2013, 1:9449-9455.
    [28] DONG X L, LU A H, HE B, et al. Highly microporous carbonsderived from a complex of glutamic acid and zinc chloride for usein supercapacitors[J]. Journal of Power Sources, 2016, 327:535-542.
    [29] TIEN B M, XU M W, LIU J F. Synthesis and electrochemicalcharacterization of carbon spheres as anode material for lithium-ion battery[J]. Mater. Lett., 2010, 64:1465-1467.
    [30] LI W R, CHEN D H, LI Z, et al. Nitrogen-containing carbonspheres with very large uniform mesopores:the superior electrodematerials for EDLC in organic electrolyte[J]. Carbon, 2007, 45:1757-1763.
    [31] DONG Y R, NISHIYAMA N, EGASHIRA Y, et al. Basic amid acid-assisted synthesis of resorcinol-formaldehyde polymer andcarbon nanospheres[J]. Ind. Eng. Chem. Res., 2008, 47:4712-4716.
    [32] WANG S, LI W C, HAO G P, et al. Temperature-programmedprecise control over the sizes of carbon nanospheres based onbenzoxazine chemistry[J]. J. Am. Chem. Soc., 2011, 133:15304-15307.
    [33] KIM T W, CHUNG P W, SLOWING I I, et al. Structurally orderedmesoporous carbon nanoparticles as transmembrane deliveryvehicle in human cancer cells[J]. Nano Lett., 2008, 8:3724-3727.
    [34] HU B, WANG K, WU L H, et al. Engineering carbon materialsfrom the hydrothermal carbonization process of biomass[J]. Adv.Mater., 2010, 22:813-828.
    [35] BACCILE N, LAURENT G, BABONNEAU F, et al. Structuralcharacterization of hydrothermal carbon spheres by advancedsolid-state MAS 13C NMR investigations[J]. J. Phys. Chem. C,2009, 113:9644-9654.
    [36] TITIRICI M M, THOMAS A, ANTONIETTI M. Replication andcoating of silica templates by hydrothermal carbonization[J]. Adv.Funct. Mater., 2007, 17:1010-1018.
    [37] SHIN Y, WANG L Q, BAE I T, et al. Hydrothermal syntheses ofcolloidal carbon spheres from cyclodextrins[J]. J. Phys. Chem. C,2008, 112:14236-14240.
    [38] YAO C, SHIN Y, WANG L Q, et al. Hydrothermal dehydration ofaqueous fructose solutions in a closed system[J]. J. Phys. Chem.C, 2007, 111:15141-115145.
    [39] CHANG-CHIEN C Y, HSU C H, LEE T Y, et al. Synthesis ofcarbon and silica hollow spheres with mesoporous shells usingpolyethylene oxide/phenol formaldehyde polymer blend[J]. Eur. J.Inorg. Chem., 2007, 24:3798-3804.
    [40] JOO J B, KIM P, KIM W, et al. Simple preparation of hollowcarbon sphere via templating method[J]. Curr. Appl. Phys.,2008, 8:814-817.
    [41] IKEDA S, TACHI K, NG Y H, et al. Selective adsorption ofglucose-derived carbon precursor on amino-functionalized poroussilica for fabrication of hollow carbon spheres with porous walls[J].Chem. Mater., 2007, 19:4335-4340.
    [42] WANG G H, SUN Q, ZHANG R, et al. Weak acid-baseinteraction induced assembly for the synthesis of diverse hollownanospheres[J]. Chem. Mater., 2011, 23:4537-4542.
    [43] SUN X M, LI Y D. Hollow carbonaceous capsules from glucosesolution[J]. J. Colloid. Interface. Sci., 2005, 291:7-12.
    [44] LI Y, CHEN J F, XU Q, et al. Controllable route to solid andhollow monodisperse carbon nanospheres[J]. J. Phys. Chem. C,2009, 113:10085-10089.
    [45] HAN J, SONG G, GUO R. A facile solution route for polymerichollow spheres with controllable size[J]. Adv. Mater., 2006, 18:3140-3144.
    [46] SUN Z C, BAI F, WU H M, et al. Hydrogen-bonding-assistedself-assembly:monodisperse hollow nanoparticles made easy[J]. J.Am. Chem. Soc., 2009, 131:13594-13595.
    [47] MCDONALD C J, BOUCK K J, CHAPUT A B, et al. Emulsionpolymerization of voided particles by encapsulation of a nonsolvent[J]. Macromolecules, 2000, 33:1593-1605.
    [48] WANG G H, SUN Q, ZHANG R, et al. Weak acid-baseinteraction induced assembly for the synthesis of diverse hollow nanospheres[J]. Chem. Mater., 2011, 23:4537-4542.
    [49] XU F, TANG Z, HUANG S, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorptionand energy storage[J]. Nat Commun, 2015, 6:7221-7226.
    [50] SUN Q, WANG L M, WANG X, et al. Using hollow carbonnanospheres as a light-induced free radical generator to overcomechemotherapy resistance[J]. J. Am. Chem. Soc., 2015, 137:1947-1955.
    [51] ZHANG L H, HE B, LI W C, et al. Surface free energy-inducedassembly to the synthesis of grid-like multi-cavity carbon sphereswith high level in-cavity encapsulation for lithium-sulfur cathode[J]. Adv. Energy Mater., 2017, 7:1701518.
    [52] FENG X L. Nanocarbons for advanced energy storage[M].Germany:Wiley-VCH Verlag GmbH&Co. KgaA, 2015.
    [53] LIU X M, HUANG Z D, OH S W, et al. Carbon nanotube(CNT)-based composites as electrode material for rechargeable Li-ionbatteries:a review[J]. Compos. Sci. Technol., 2012, 72(2):121-144.
    [54]楠顶,黄正宏,康飞宇,等.锂离子电池负极用纤维状炭材料[J].新型炭材料, 2015, 30(1):1-11.NAN D, HUANG Z H, KANG F Y, et al. Research progress onfibrous carbon materials as anode materials for lithium ionbatteries[J]. New Carbon Materials, 2015, 30(1):1-11.
    [55] ZHOU Z P, LIU K M, LAI C L, et al. Graphitic carbon nanofibersdeveloped from bundles of aligned electrospun polyacrylonitrilenanofibers containing phosphoric acid[J]. Polymer, 2010, 51(11):2360-2367.
    [56] THAVASI V, SINGH G, RAMAKRISHNA S. Electrospunnanofibers in energy and environmental applications[J]. EnergyEnviron. Sci., 2008, 1:205-221.
    [57] QIAN H S, YU S H, LUO L B, et al. Synthesis of uniformTe@carbon-rich composite nanocables with photoluminescenceproperties and carbonaceous nanofibers by the hydrothermalcarbonization of glucose[J]. Chem. Mater., 2006, 18(8):2102-2108.
    [58] ODRIGUEZ N M. A review of catalytically grown carbonnanofibers[J]. J. Mater. Res., 1993, 8(12):3233-3250.
    [59] MITTAL J, BAHL O P, MATHUR R B. Single step carbonizationand graphitization of highly stablized pan fibers[J]. Carbon, 1997,35:1196-1197.
    [60] KIM I C, YUN H G, LEE K H. Preparation of asymmetricpolyacrylonitrile membrane with small pore size by phaseinversion and post-treatment process[J]. J. Membr. Sci., 2002,199:75-84.
    [61] ZHENG Z, GUO H, PEI F, et al. High sulfur loading inhierarchical porous carbon rods constructed by vertically orientedporous graphene-like nanosheets for Li-S batteries[J]. Adv.Funct. Mater., 2016, 26(48):8952-8959.
    [62] BRYDSON R, WESTWOOD A V K, JIANG X, et al. Investigatingthe distribution and bonding of light elements alloyed incarbonaceous materials using EELS in the TEM/STEM[J]. Carbon,1998, 36(7):1139-1147.
    [63] ARENA U, MASTELLONE M L, CAMINO G, et al. An innovativeprocess for mass production of multi-wall carbon nanotubes bymeans of low-cost pyrolysis of polyolefins[J]. Polym. Degrad.Stabil., 2006, 91(4):763-768.
    [64] REN S H, PRAKASH R, WANG D, et al. Fe3O4anchored onto helical carbon nanofibers as high-performance anode in lithium-ion batteries[J]. Chem. Sus. Chem., 2012, 5(8):1397-1400.
    [65] ZHI L J, GORELIK T, FRIEDLEIN R, et al. Solid-state pyrolysesof metal phthalocyanines:a simple approach towards nitrogen-doped CNTs and metal/carbon nanocables[J]. Small, 2005, 1(8/9):798-801.
    [66] SU P P, XIAO H, ZHAO J, et al. Nitrogen-doped carbonnanotubes derived from Zn-Fe-ZIF nanospheres and theirapplication as efficient oxygen reduction electrocatalysts with in situ generated iron species[J]. Chemical Science, 2013, 4(7):2941-2946.
    [67] STEINHART M, LIANG C, LYNN G W, et al. Direct synthesis ofmesoporous carbon microwires and nanowires[J]. Chem. Mater.,2007, 19(10):2383-2385.
    [68] CHAE W S, AN M J, LEE S W, et al. Templated carbon nanofiberwith mesoporosity and semiconductivity[J]. J. Phys. Chem. B,2006, 110(13):6447-6450.
    [69] FUJIKAWA D, UOTA M, SAKAI G, et al. Shape-controlledsynthesis of nanocarbons from resorcinol-formaldehydenanopolymers using surfactant-templated vesicular assemblies[J].Carbon, 2007, 45(6):1289-1295.
    [70] CHENG Y L, LI T H, FANG C Q, et al. Soft-templated synthesisof mesoporous carbon nanospheres and hollow carbon nanofibers[J]. Appl. Surf. Sci., 2013, 282:862-869.
    [71] CHEN H, LI Y, TANG X H, et al. Preparation of single-handedhelical carbonaceous nanotubes using 3-aminophenol-formaldehyde resin[J]. RSC Adv., 2015, 5(50):39946-39951.
    [72] ZHANG X Q, SUN Q, DONG W, et al. Synthesis of superiorcarbon nanofibers with large aspect ratio and tunable porosity forelectrochemical energy storage[J]. J. Mater. Chem. A, 2013, 1(33):9449-9455.
    [73] SUN Q, ZHANG X Q, HAN F, et al. Controlled hydrothermalsynthesis of 1D nanocarbons by surfactant-templated assembly foruse as anodes for rechargeable lithium-ion batteries[J]. J. Mater.Chem., 2012, 22(33):17049-17054.
    [74] HUANG G, LI Q, YIN D M, et al. Hierarchical porousTe@ZnCo2O4nanofibers derived from Te@metal-organicframeworks for superior lithium storage capability[J]. Adv. Funct.Mater., 2017, 27(5):1604941.
    [75] HE L, ZHANG X Q, LU A H. Two-dimensional carbon-basedporous materials:synthesis and applications[J]. Acta Phys:Chim.Sin., 2017, 33(4):709-728.
    [76] HAO G P, JIN Z Y, SUN Q, et al. Porous carbon nanosheets withprecisely tunable thickness and selective CO2adsorptionproperties[J]. Energy Environ. Sci., 2013, 6:3740-3746.
    [77] WANG S, CHENG F, ZHANG P, et al. Fabrication of high porevolume carbon nanosheets with uniform arrangement of mesopores[J]. Nano Research, 2017, 10(6):2106-2116.
    [78] ZHANG L H, LI W C, LIU H, et al. Thermoregulated phasetransition synthesis of two-dimensional carbon nanoplates rich insp2carbon and unimodal ultramicropores for kinetic gasseparations[J]. Angew. Chem. Int. Ed., 2018, 57(6):1632-1635.
    [79] CHENG F, LI W C, LU A H. Interconnected nanoflake networkderived from a natural resource for high-performance lithium-ionbatteries[J]. ACS Appl. Mater. Interfaces, 2016, 8:27843-27849.
    [80] PEKALA R W, MAY S T, KASCHMITTER J L. The aerocapacitor:an electrochemical double-layer energy-storagedevice[J]. Journal of the Electrochemical Society, 1993, 140(2):446-451.
    [81]吴峻峰,白朔,刘树和,等.大尺寸各向同性热解炭材料的制备与表征[J].新型炭材料, 2006, 21(2):119.WU J F, BAI S, LIU S H, et al. Fabrication and characterization oflarge isotropic pyrolytic carbons[J]. New Carbon Materials, 2006,21(2):119.
    [82] GATICA J M, GOMEZ D M, HARTI S, et al. Monolithichoneycomb design applied to carbon materials for catalyticmethane decomposition[J]. Applied Catalysis A:General, 2013,458:21-27.
    [83] OHTA N, NISHI Y, MORISHITA T, et al. Preparation ofmicroporous carbon foams for water vapor in ambient air[J]. NewCarbon Materials, 2008, 23(3):216.
    [84]吴小辉,洪孝挺,南俊民,等.模板法合成多孔炭材料的研究现状[J].材料导报A:综述篇, 2012, 26(4):61.WU X H, HONG X T, NAN J M, et al. Recent progress in thetemplated synthesis of porous carbon materials[J]. MaterialsReview, 2012, 26(4):61.
    [85] ESTEVEZ L, DUA R, BHANDARI N, et al. A facile approach forthe synthesis of monolithic hierarchical porous carbons-highperformance materials for amine based CO2capture andsupercapacitor electrode[J]. Energy Environ. Sci., 2013, 6:1785-1792.
    [86] HAO G P, LI W C, QIAN D, et al. Structurally designed synthesisof mechanically stable poly(benzoxazine-co-resol)-based porouscarbon monoliths and their application as high-performance CO2capture sorbents[J]. Journal of the American Chemical Society,2011, 133(29):11378-11388.
    [87] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nat. Mater., 2008, 7:845-854.
    [88]何水剑,陈卫.碳基三维自支撑超级电容器电极材料研究进展[J].电化学, 2015, 21(6):518-533.HE S J, CHEN W. Progress of self-supported supercapacitorelectrode materials based on carbon substrates[J]. Journal ofElectrochemistry, 2015, 21(6):518-533.
    [89] PEAN C, DAFFOS B, ROTENBERG B, et al. Confinement,desolvation, and electrosorption effects on the diffusion of ions innanoporous carbon electrodes[J]. J. Am. Chem. Soc.. 2015, 137:12627.
    [90]向宇,曹高萍.双电层电容器储能机理研究概述[J].储能科学与技术, 2016(6):815-826.XIANG Y, CAO G P. A review on the mechanism of the energystorage about the electrochemical double-layer capacitors[J].Energy Storage Science and Technology, 2016(6):815-826.
    [91] WANG D W, LI F, LIU M, et al. 3D aperiodic hierarchical porousgraphitic carbon material for high-rate electrochemical capacitiveenergy storage[J]. Angew. Chem. Int. Ed., 2008, 47:373-376.
    [92] LIU C, LI F,MA L P,et al. Advanced materials for energy storage[J]. Adv. Mater., 2010, 22:28-62.
    [93] HUANG Z D, ZHANG B, OH S W, et al. Self-assembled reducedgraphene oxide/nanotube thin films as electrodes forsupercapacitors[J]. J. Mater. Chem., 2012, 22:3591-3599.
    [94] XU Y X, LIN Z Y, ZHONG X, et al. Holey graphene frameworksfor highly efficient capacitive energy storage[J]. NatureCommunications, 2014, 5:4554.carbon
    [95] TAO Y, XIE X Y, LV W, et al. Towards ultrahigh volumetriccapacitance:graphene derived highly dense but porous carbonsfor supercapacitors[J]. Scientific Reports, 2013, 3:2975.
    [96] YANG X W, CHENG C, WANG Y F, et al. Liquid-mediateddense integration of graphene materials for compact capacitiveenergy storage[J]. Science, 2013, 6145(341):534-537.
    [97]刘道庆.石墨烯基高密度炭材料的制备及其超级电容器性能研究[D].哈尔滨:哈尔滨工业大学, 2016.LIU D Q. Research on preparation and supercapacitive propertiesof high-density graphene-based carbon materials[D]. Harbin:Harbin Institude of Technology, 2016.
    [98] WU Z S, PARVEZ K, WINTER A, et al. Layer-by-layerassembled heteroatom-doped graphene films with ultrahighvolumetric capacitance and rate capability for micro-supercapacitors[J]. Advanced Materials, 2014, 26(26):4552-4558.
    [99] VIX-GUTERL C, FRACKOWIAK E, KRZYSZTOF J, et al.Electrochemical energy storage in ordered porous carbon materials[J]. Carbon, 2005, 43:1293-1302.
    [100] CHMIOLA J, YUSHIN G, GOGOTSI Y, et al. Anomalousincrease in carbon capacitance at pores sizes less than 1 nm[J].Science, 2006, 313(22):1760-1763.
    [101] ZHANG L, YANG X, CHEN Y, et al. Controlling the effectivesurface area and pore size distribution of sp2carbon materials andtheir impact on the capacitance performance of these materials[J].J. Am. Chem. Soc., 2013, 135:5921-5929.
    [102] ANIA C O, KHOMENKO V, RAYMUNDO E, et al. The largeelectrochemical capacitance of microporous doped carbonobtained by using a zeolite template[J]. Advanced FunctionalMaterials, 2007, 17:1828-1836.
    [103] LIU H J, WANG J, WANG C X, et al. Ordered hierarchicalmesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance insupercapacitor[J]. Advanced Energy Materials, 2011, 1:1101-1108.
    [104] CHMIOLA J, YUSHINR G, DASH R, et al. Effect of pore size andsurface area of carbide derived carbons on specific capacitance[J].Journal of Power Sources, 2006, 158:765-772.
    [105] ZHANG H M, LIU J, TIAN Z F, et al. A general strategy towardtransition metal carbide/core/nanospheres and theirapplication for supercapacitor electrode[J]. Carbon, 2016, 100:590-599.
    [106] ZHANG H F, HE X J, GU J, et al. Wrinkled porous carbonnanosheets from methylnaphthalene oil for high-performancesupercapacitors[J]. Fuel Processing Technology, 2018, 175:10-16.
    [107] QU W H, GUO Y B, SHEN W Z, et al. Using asphaltenesupermolecules derived from coal for the preparation of efficientcarbon electrodes for supercapacitors[J]. J. Phys. Chem. C,2016, 120(28):15105–15113.
    [108] DONG X L, WANG S Q, HE B, et al. Highly sp2hybridized andnitrogen, oxygen dual-doped nanoporous carbon network:synthesis and application for ionic liquid supercapacitors[J].Micropor. Mesopor. Mater., 2018, 259:229-237.
    [109] KERISIT S, SCHWENZER B, VIJAYAKUMARM. Effects ofoxygen-containing functional groups on supercapacitor performance[J]. J. Phys. Chem. Lett., 2014, 5:2330-2334.
    [110] FRACKOWIAK E, LOTA G, MACHNIKOWSKI J, et al.Optimisation of supercapacitors using carbons with controllednanotexture and nitrogen content[J]. Electrochimica Acta, 2006,51:2209-2214.
    [111] ZHANG W L, XU C, MA C Q, et al. Nitrogen-superdoped 3Dgraphene networks for high-performance supercapacitors[J]. Adv.Mater., 2017, 29(36):1701677.
    [112] WOOD K N, O'HAYRE R, PYLYPENKO S. Recent progress onnitrogen structures designed for use in energy andsustainability applications[J]. Energy Environ. Sci., 2014, 7:1212–1249.
    [113] ZHOU Y, XU X, HUANG Y, et al. Tuning and understanding thesupercapacitance of heteroatom-doped graphene[J]. EnergyStorage Materials, 2015, 1:103-111.
    [114] ROLDAN S, GRANDA M, MENENDEZ R, et al. Mechanisms ofenergy storage in carbon-based supercapacitors modified with aquinoid redox-active electrolyte[J]. J. Phys. Chem. C, 2011, 115(35):17606-17611.
    [115] BALACH J, BRUNO M M, COTELLA N G, et al. Electrostaticself-assembly of hierarchical porous carbon microparticles[J].Journal of Power Sources, 2012, 199:386-394.
    [116] POGNON G, BROUSSE T, DEMARCONNAY L, et al.Performance and stability of electrochemical capacitor based onanthraquinone modified activated carbon[J]. Journal of PowerSources, 2011, 196(8):4177-4122.
    [117] XU L, SHI R Y, LI H F, et al. Pseudocapacitive anthraquinonemodified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors[J]. Carbon, 2018, 127:459-468.
    [118] ZHANG X Q, LI W C, HE B, et al. Ultrathin phyllosilicatenanosheets as anode material with superior rate performance forlithium ion batteries[J]. J. Mater. Chem. A, 2018, 6(4):1397-1402.
    [119] HE B, LI W C, LU A H. High nitrogen-content carbon nanosheetsformed using the Schiff-base reaction in a molten salt medium asefficient anode materials for lithium-ion batteries[J]. J. Mater.Chem. A, 2015, 3:579-585.
    [120] GUO B K, WANG X Q, FULVIO P F. Soft-templated mesoporouscarbon-carbon nanotube composites for high performance lithium-ion batteries[J]. Adv. Mater., 2011, 23:4661-4666.
    [121] ZHAO J J, BULDUM A, HAN J, et al. First-principles study ofLi-intercalated carbon nanotube ropes[J]. Phys. Rev. Lett.,2000, 85:1706-1709.
    [122] SENAMI M, LKEDA Y, FUKUSHIMA A, et al. Theoretical studyof adsorption of lithium atom on carbon nanotube[J]. AIP Adv.,2011, 1(4):042106.
    [123] GAO B, BOWER C, LORENTZEN J D, et al. Enhanced saturationlithium composition in ball-milled single-walled carbonnanotubes[J]. Chem. Phys. Lett., 2000, 327(1–2):69-75.
    [124] YOO E J, KIM J, HOSONO E, et al. Large reversible Li storage ofgraphene nanosheet families for use in rechargeable lithium ionbatteries[J]. Nano Lett., 2008, 8(8):2277-2282.
    [125] WAHID M, PUTHUSSERI D, GAWLI Y, et al. Hard carbons forsodium-ionbatteryanodes:syntheticstrategies, materialproperties,and storage mechanisms[J]. Chem. Sus. Chem., 2018, 11:506-526.
    [126] YANG J Q, ZHOU X L, WU D H, et al. S-doped N-rich carbonnanosheets with expanded interlayer distance as anode materials/carbon for sodium-ion batteries[J]. Advanced Materials, 2017, 29:1604108.
    [127] QIU S, XIAO L, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv. Energy Mater., 2017, 7:1700403.
    [128] DING J, WANG H, LI Z, et al. Carbon nanosheet frameworksderived from peat moss as high performance sodium ion batteryanodes[J]. ACS Nano, 2013, 7(12):11004-11015.
    [129] JIN Y, SUN S, OU M, et al. High-performance hard carbon anode:tunable local structures and sodium storage mechanism[J]. ACSAppl. Energy Mater., 2018, 1:2295-2305.
    [130] HOU H S, QIU X Q, WEI W F, et al. Carbon anode materials foradvanced sodium-ion batteries[J]. Adv. Energy Mater., 2017, 7:1602898.
    [131] TANG K, FU L J, WHITE R J, et al. Hollow carbon nanosphereswith superior rate capability for sodium-based batteries[J]. Adv.Energy Mater., 2012, 2:873–877.
    [132]张强,程新兵,黄佳琦,等.碳质材料在锂硫电池中的应用研究进展[J].新型炭材料, 2014, 29(4):241-264.ZHANG Q, CHENG X B, HUANG J Q, et al. Review of carbonmaterials for advanced lithium-sulfur batteries[J]. New CarbonMaterials, 2014, 29(4):241-264.
    [133] WANG D W, ZENG Q, ZHOU G, et al. Carbon-sulfur compositesfor Li-S batteries:status and prospects[J]. J. Mater. Chem. A,2013, 1:9382-9394.
    [134] JAYAPRAKASH N, SHEN J, MOGANTY S S, et al. Poroushollow carbon@sulfur composites for high-power lithium-sulfurbatteries[J]. Angew. Chem. Int. Ed., 2011, 50:5904-5908.
    [135] SUN Q, HE B, ZHANG X Q, et al. Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfurbatteries[J]. ACS Nano, 2015, 9:8504-8513.
    [136] ZHANG X Q, HE B, LI W C, et al. Hollow carbon nanofibers withdynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes[J]. Nano Research, 2018, 11(3):1238-1246.
    [137] HE B, LI W C, YANG C, et al. Incorporating sulfur inside thepores of carbons for advanced lithium-sulfur batteries:anelectrolysis approach[J]. ACS Nano, 2016, 10:1633-1639.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700