用户名: 密码: 验证码:
库车坳陷大北-克深地区深层致密砂岩气地球化学特征及成因
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemical Characteristics and Genesis of Deep Tight Sandstone Gas in the Dabei-Keshen Zone, Kuqa Depression
  • 作者:魏强 ; 李贤庆 ; 梁万乐 ; 孙可欣 ; 谢增业 ; 李谨 ; 肖中尧
  • 英文作者:WEI Qiang;LI Xian-qing;LIANG Wan-le;SUN Ke-xin;XIE Zeng-ye;LI Jin;XIAO Zhong-yao;State Key Laboratory of Coal Resources and Safe Mining,College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing);College of Geoscience and Surveying Engineering,Chian Umiversity of Mining and Technology(Beijing);Research Institute of Petroleum Exploration & Development;Research Institute of Exploration and Development;
  • 关键词:深层致密砂岩气 ; 地球化学特征 ; 碳同位素 ; 成因 ; 大北-克深地区 ; 库车坳陷
  • 英文关键词:deep tight sandstone gas;;geochemical characteristics;;carbon isotope;;genesis;;Dabei-Keshen zone;;Kuqa depression
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中国矿业大学(北京)煤炭资源与安全开采国家重点实验室;中国矿业大学(北京)地球科学与测绘工程学院;中石油勘探开发研究院天然气地质所;中石油塔里木油田分公司勘探开发研究院;
  • 出版日期:2019-01-23 16:43
  • 出版单位:矿物岩石地球化学通报
  • 年:2019
  • 期:v.38
  • 基金:“十三五”国家油气科技重大专项课题(2016ZX05007-003);; 中央高校基本科研业务费专项资金项目(2010YM01)
  • 语种:中文;
  • 页:KYDH201902023
  • 页数:10
  • CN:02
  • ISSN:52-1102/P
  • 分类号:222-231
摘要
为探讨库车坳陷大北-克深地区深层致密砂岩气的地球化学特征及成因,对采集的天然气样品进行了组分定量和碳同位素组成分析。结果显示,库车坳陷大北-克深地区深层致密砂岩气中甲烷占绝对优势,为87.30%~98.33%,平均为96.18%;其重烃气含量较低,为0%~3.41%,为明显的干气;天然气的δ~(13)C_1为-31.9‰~-26.5‰,δ~(13)C_2为-24.2‰~-16.1‰,δ~(13)C_3为-31.1‰~-15.7‰;烷烃气碳同位素偏重,主体呈正碳同位素序列,局部出现倒转;天然气成熟度为1.50%~3.62%,平均为2.39%,为高-过成熟天然气;δ~(13)C_(CO2)主要为-19‰~-10.3‰。研究表明,大北-克深地区深层致密砂岩气中烷烃气属于煤成气成因,同型不同源气或煤成气与油型气的混合是烷烃气碳同位素倒转的主要原因,同时也与深层高温高压条件下烷烃气的形成与成藏过程有关;深层致密砂岩气中CO_2主要为有机成因。
        In order to study the geochemical characteristics and genesis of deep tight sandstone gas in the Dabei-Keshen zone of the Kuqa depression, components and stable carbon isotopic compositions of natural gas samples were analyzed. The deep tight sandstone gas of Dabei-Keshen zone, Kuqa depression is dominant by methane, ranging from 87.30% to 98.33%, with an average of 96.18%. Samples contain low C_(2+) from 0% to 3.41%, indicating deep tight sandstone gases in the Dabei-Keshen zone are dry gases. The δ~(13)C_1 of natural gases ranges from-31.9‰ to-26.5‰, δ~(13)C_(2 ) is-31.9‰ to-26.5‰, δ~(13)C_(2 )is-31.1‰ to-15.7‰. The carbon isotope of alkane gas is heavier, some of which show the positive carbon isotope sequence and others display partial reversal. The natural gas maturity ranges from 1.50% to 3.62% with an average of 2.39%, indicative of high-over matured natural gas. δ~(13)C_(CO2) is-19‰ to-10.3‰. Therefore, the deep tight sandstone gas of Dabei-Keshen zone, Kuqa depression belongs to coal-derived gas. Carbon isotope reversal of alkane result from the mixing of natural gas from different sources or the mixing of coal-derived gas and oil type gas, and is also possibly related to natural gas formation and accumulation under high temperature and high pressure in deep strata. Moreover, the carbon dioxide in deep tight sandstone gas is mainly organic in origin.
引文
Burruss R C, Laughrey C D. 2010. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons. Organic Geochemistry, 41(12): 1285-1296
    Dai J X, Zou C N, Li J, Ni Y Y, Hu G Y, Zhang X B, Liu Q Y, Yang C, Hu A P. 2009. Carbon isotopes of Middle-Lower Jurassic coal-derived alkane gases from the major basins of northwestern China. International Journal of Coal Geology, 80(2): 124-134
    Dai J X, Gong D Y, Ni Y Y, Yu C, Wu W. 2014. Genetic types of the alkane gases in giant gas fields with proven reserves over 1000×108m3 in China. Energy Exploration & Exploitation, 32(1): 1-18
    Du J G, Jin Z J, Xie H S, Bai L P, Liu W. 2003. Stable carbon isotope compositions of gaseous hydrocarbons produced from high pressure and high temperature pyrolysis of lignite. Organic Geochemistry, 34(1): 97-104
    Guo X W, Liu K Y, Jia C Z, Song Y, Zhao M J, Zhuo Q G, Lu X S. 2016. Effects of tectonic compression on petroleum accumulation in the Kelasu Thrust Belt of the Kuqa Sub-basin, Tarim Basin, NW China. Organic Geochemistry, 101: 22-37
    Hu G Y, Yu C, Tian X W. 2014. The origin of abnormally high benzene in light hydrocarbons associated with the gas from the Kuqa depression in the Tarim Basin, China. Organic Geochemistry, 74: 98-105
    Jenden P D, Kaplan I R, Poreda R, Craig H. 1988. Origin of nitrogen-rich natural gases in the California Great Valley: Evidence from helium, carbon and nitrogen isotope ratios. Geochimica et Cosmochimica Acta, 52(4): 851-861
    Jia C Z, Li Q M. 2008. Petroleum geology of Kela-2, the most productive gas field in China. Marine and Petroleum Geology, 25(4-5): 335-343
    Krooss B M, Littke R, Müller B, Frielingsdorf J, Schwochau K, Idiz E F. 1995. Generation of nitrogen and methane from sedimentary organic matter: Implications on the dynamics of natural gas accumulations. Chemical Geology, 126(3-4): 291-318
    Rooney M A, Claypool G E, Chung H M. 1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chemical Geology, 126(3-4): 219-232
    Shen Y Q, Lü X X, Guo S, Song X, Zhao J. 2017. Effective evaluation of gas migration in deep and ultra-deep tight sandstone reservoirs of Keshen structural belt, Kuqa depression. Journal of Natural Gas Science and Engineering, 46: 119-131
    Zhang S C, Zhang B, Zhu G Y, Wang H T, Li Z X. 2011. Geochemical evidence for coal-derived hydrocarbons and their charge history in the Dabei Gas Field, Kuqa Thrust Belt, Tarim Basin, NW China. Marine and Petroleum Geology, 28(7): 1364-1375
    Zhu G Y, Wang H T, Weng N, Yang H J, Zhang K, Liao F R, Neng Y. 2015. Geochemistry, origin and accumulation of continental condensate in the ultra-deep-buried Cretaceous sandstone reservoir, Kuqa depression, Tarim Basin, China. Marine and Petroleum Geology, 65: 103-113
    戴金星, 戚厚发. 1989. 我国煤成烃气的δ13C-R0关系. 科学通报, 34(9): 690-692
    戴金星. 1993. 天然气碳氢同位素特征和各类天然气鉴别. 天然气地球科学, 4(2-3): 1-40
    戴金星. 1995. 中国含油气盆地的无机成因气及其气藏. 天然气工业, 15(3): 22-27
    冯松宝. 2012. 库车坳陷克拉苏构造带超高压大气田形成机制研究. 博士学位论文. 北京: 中国矿业大学(北京), 43-48
    冯松宝, 汪宏志. 2013. 库车坳陷克拉苏构造带超高压大气田天然气地球化学特征. 天然气地球科学, 24(4): 784-789
    高文杰, 李贤庆, 张光武, 魏强, 张吉振, 祁帅, 陈金明. 2018. 塔里木盆地库车坳陷克拉苏构造带深层致密砂岩气藏储层致密化与成藏关系. 天然气地球科学, 29(2): 226-235
    郭继刚, 庞雄奇, 刘丹丹, 姜振学, 姜福杰. 库车坳陷中、下侏罗统煤系烃源岩排烃特征及资源潜力评价.天然气地球科学, 2012, 23(2): 327-334
    贺聪, 吉利明, 苏奥, 吴东远, 张明震. 2016. 天然气组分碳同位素倒转成因分析及地质应用. 特种油气藏, 23(4): 14-19
    姜振学, 庞雄奇, 杨海军, 肖中尧, 刘洛夫. 2015. 库车坳陷致密砂岩气成因机制与分布预测. 北京: 科学出版社, 22-30
    雷刚林, 谢会文, 张敬洲, 王月然, 黄少英, 叶茂林, 张国伟. 2007. 库车坳陷克拉苏构造带构造特征及天然气勘探. 石油与天然气地质, 28(6): 816-820, 835
    李贤庆, 肖贤明, 唐永春, 米敬奎, 熊波, 包建平. 2003. 应用碳同位素动力学模拟评价天然气的成因. 中国石油勘探, 8(4): 50-55
    李贤庆, 肖中尧, 胡国艺, 田辉, 周强. 2005. 库车坳陷天然气地球化学特征和成因(为庆祝克拉玛依油田勘探开发50周年而作). 新疆石油地质, 26(5): 489-492
    李贤庆, 肖贤明, 田辉. 2011. 天然气生成动力学及其应用. 北京: 地质出版社, 116-118
    林治家, 陈衍景, 黄智龙, 申宝剑. 2006. 济阳坳陷CO2气藏同位素地球化学特征及成因. 矿物岩石地球化学通报, 25(3): 272-278
    刘全有, 秦胜飞, 李剑, 刘文汇, 张殿伟, 周庆华, 胡安平. 2007. 库车坳陷天然气地球化学以及成因类型剖析. 中国科学(D辑), 37(S2): 149-156
    刘全有, 金之钧, 张殿伟, 刘志舟, 李剑. 2008. 塔里木盆地天然气地球化学特征与成因类型研究. 天然气地球化学, 19(2): 234-237
    刘文汇, 徐永昌. 1999. 煤型气碳同位素演化二阶段分馏模式及机理. 地球化学, 28(4): 359-366
    秦胜飞, 李先奇, 肖中尧, 李梅, 张秋茶. 2005. 塔里木盆地天然气地球化学及成因与分布特征. 石油勘探与开发, 32(4): 70-78
    宋岩, 赵孟军, 胡国艺, 朱光有. 2012. 中国天然气地球化学研究新进展及展望. 矿物岩石地球化学通报, 31(6): 529-542
    王珂, 杨海军, 李勇, 张荣虎, 王俊鹏, 杨学君. 2018. 塔里木盆地大北气田超深层致密砂岩储集层构造裂缝发育特征及其影响因素. 矿物岩石地球化学通报, 37(1): 111-120
    王招明. 2014. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律. 天然气地球科学, 25(2): 153-166
    徐永昌, 沈平, 刘文汇. 1994. 天然气成因理论及应用. 北京: 科学出版社, 10-12
    杨杰, 李贤庆, 徐红卫, 祁帅, 张伟, 王哲, 樊志伟. 2017. 深层致密砂岩气成藏研究进展. 见: 中央高校基本科研业务费项目研究成果论文集2016(下册). 北京: 煤炭工业出版社, 1059-1068
    余晓露, 马中良, 郑伦举, 赵中熙. 不同热模拟方式下烃源岩干酪根演化特征红外光谱分析.石油实验地质, 2017, 39(1): 134-140
    赵靖舟, 李启明. 2003. 塔里木盆地油气藏形成与分布规律. 北京: 石油工业出版社, 6-8
    郑永飞, 陈江峰. 2000. 稳定同位素地球化学. 北京: 科学出版社, 53-59
    朱光有, 张水昌, 梁英波, 戴金星, 李剑. 2005. 硫酸盐热化学还原反应对烃类的蚀变作用. 石油学报, 26(5): 48-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700