用户名: 密码: 验证码:
基于相互作用积分法的应力强度因子计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Computation of the Stress Intensity Factor Based on the Interaction Integral Method
  • 作者:宫经全 ; 张少钦 ; 李禾 ; 张宸宇
  • 英文作者:GONG Jing-quan;ZHANG Shao-qin;LI He;ZHANG Chen-yu;Key Laboratory of Nondestructive Testing (Ministry of Education),Nanchang Hangkong University;
  • 关键词:应力强度因子 ; 相互作用积分法 ; 紧凑拉伸试样 ; 奇异单元
  • 英文关键词:stress intensity factor;;the interactive integral method;;compact sample;;singular element
  • 中文刊名:NCHK
  • 英文刊名:Journal of Nanchang Hangkong University(Natural Sciences)
  • 机构:无损检测教育部重点实验室(南昌航空大学);
  • 出版日期:2015-03-15
  • 出版单位:南昌航空大学学报(自然科学版)
  • 年:2015
  • 期:v.29;No.92
  • 基金:教育部无损检测重点实验室基金(ZD201129007)
  • 语种:中文;
  • 页:NCHK201501007
  • 页数:7
  • CN:01
  • ISSN:36-1303/N
  • 分类号:47-53
摘要
通过相互作用积分法计算紧凑拉伸试样的应力强度因子。研究奇异单元的尺寸和角度、积分区域的大小、荷载大小和裂纹长度等因素对应力强度因子值的影响。计算结果表明:采用相互作用积分法计算应力强度因子时,增加奇异单元的长度可以提高计算效率,奇异单元的角度在9°~45°之间变化时计算值保持稳定。随着积分区域的增大,应力强度因子逐渐增大。裂纹长度一定时,应力强度因子与载荷之间呈线性关系,而载荷一定时,随着裂纹长度的增加应力强度因子的增加速率不断增大。
        The stress intensity factor( SIF) for a compact tensile sample is computed by the interaction integral method. The effects of several important factors such as the dimensions of the singular element,the size of integration domain,load value and crack length on the SIF are investigated. The results shown that it the computational efficiency was improved by increasing the length of singular element. The value of SIF remained stable when the angle of singular element varied from 9° to 45°. With integration domain expanding,the SIF gradually increased. The SIF kept a linear relationship with loads when the crack length was fixed,while the increase of SIF accelerated with crack lengths when the load was constant.
引文
[1]王自强,陈少华.高等断裂力学[M].北京:科学出版社,2009.
    [2]Chen Z Z,Tokaji K.Effects of particle size on fatigue crack initiation and small crack growth in SIC particulate-reinforced aluminum alloy composites[J].Materials Letters,2004,58:2314-2321.
    [3]李晓臣,王自强.在裂纹尖端引入位移协调奇异单元的有限单元法[J].上海力学,1983,3:79-99.
    [4]Rice J R.A path independent integral and the approximate analysis of strain concentration by notch and cracks[J].Journal of Applied Mechanics,1968,35:379-386.
    [5]Walters M C,Paulino G H,Dodds R H.Stress-intensity factors for surface cracks in functionally graded materials under modeI thermomenchanical loading[J].International Journal of Solids and Structures,2004,41:1081-1118.
    [6]刘明尧,柯孟龙.裂纹尖端应力强度因子的有限元计算方法分析[J].武汉理工大学学报,2011,6:116-121.
    [7]Wang S S,Yau J F,Corten H T.A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity[J].International Journal of Fracture,1980,16(3):247-259.
    [8]Stern M,Becker E B,Dunham R S.A contour integral computation of mixed-mode stress intensity factors[J].International Journal of Fracture,1976,12(3):359-368.
    [9]Yau J,Wang S,Corten H.A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity[J].Journal of Applied Mechanics,1980,47:335-341.
    [10]Brian Lawn.脆性固体断裂力学[M].北京:高等教育出版社,2010.
    [11]中国航空研究院编写委员会.应力强度因子手册(增订版)[M].北京:科学出版社,1993.
    [12]张洪才.ANSYS14.0理论解析与工程应用实例[M].北京:机械工业出版社,2013.
    [13]Cao J J,Yang G J,Paker J A.Crack modeling in FE analysis of circular tubular joints[J].Engineering Fracture Mechanics,1998,61:537-553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700