用户名: 密码: 验证码:
非等温退火对大变形铝试样组织和力学性能的影响:模拟与实验(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of non-isothermal annealing on microstructure and mechanical properties of severely deformed aluminum samples:Modeling and experiment
  • 作者:A.R.KHODABAKHSHI ; M.KAZEMINEZHAD
  • 英文作者:A.R.KHODABAKHSHI;M.KAZEMINEZHAD;Department of Materials Science and Engineering, Sharif University of Technology;
  • 关键词:大塑性变形 ; 多向锻造 ; 非等温退火 ; 位错密度模型 ; 显微组织 ; 力学性能
  • 英文关键词:severe plastic deformation;;multi-directional forging;;non-isothermal annealing;;dislocation density-based model;;microstructure;;mechanical properties
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:Department of Materials Science and Engineering, Sharif University of Technology;
  • 出版日期:2019-06-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:the research board of Sharif University of Technology, Iran, for the financial support and provision of the research facilities used for this work
  • 语种:英文;
  • 页:ZYSY201906002
  • 页数:11
  • CN:06
  • ISSN:43-1239/TG
  • 分类号:16-26
摘要
为了研究铝在非等温退火过程中的组织演变和流动应力,分别采用2、4和6道次多向锻造工艺,使试样应变量为1、2和3。然后,在150、200、250、300和350℃下对试样进行非等温退火。通过对变形阶段和退火阶段的模拟,研究位错密度和流动应力的演化规律。结果发现,经2、4和6道次多向锻造的试样在温度分别达到250、250和300℃时其热稳定性仍然较好。模拟结果与实验数据吻合较好。与模拟得到的流动应力值相比,经2道次和4道次多向锻造的样品在350℃非等温退火后的实验流动应力值偏低。其根本原因在于,模拟所用非等温退火模型仅是基于晶内位错密度演化,只考虑了回复和再结晶现象;然而,在350℃退火后,除了回复和再结晶外,还会发生晶粒长大现象,这使得模拟和实验得到的流动应力值出现偏差。
        In order to investigate the evolution of microstructure and flow stress during non-isothermal annealing,aluminum samples were subjected to strain magnitudes of 1, 2 and 3 by performing 2, 4 and 6 passes of multi-directional forging. Then, the samples were non-isothermally annealed up to 150, 200, 250, 300 and 350 ℃. The evolution of dislocation density and flow stress was studied via modeling of deformation and annealing stages. It was found that 2, 4 and 6 passes multi-directionally forged samples show thermal stability up to temperatures of 250, 250 and 300 ℃, respectively. Modeling results and experimental data were compared and a reasonable agreement was observed. It was noticed that 2 and 4 passes multi-directionally forged samples annealed non-isothermally up to 350 ℃ have a lower experimental flow stress in comparison with the flow stress achieved from the model.The underlying reason is that the proposed non-isothermal annealing model is based only on the intragranular dislocation density evolution, which only takes into account recovery and recrystallization phenomena. However, at 350℃ grain growth takes place in addition to recovery and recrystallization,which is the source of discrepancy between the modeling and experimental flow stress.
引文
[1]REN J,SHAN A.Strengthening and stress drop of ultrafine grain aluminum after annealing[J].Transactions of Nonferrous Metals Society of China,2010,20:2139-2142.
    [2]ZHAO F X,XU X C,LIU H Q,WANG Y L.Effect of annealing treatment on the microstructure and mechanical properties of ultrafine-grained aluminum[J].Materials&Design,2014,53:262-268.
    [3]CAO W Q,GODFREY A,HANSEN N,LIU Q.Annealing behavior of nanostructured aluminum produced by cold rolling to ultrahigh strains[J].Metallurgical and Materials Transactions A,2009,40:204-214.
    [4]HANSEN N,HUANG X,M?LLER M G,GODFREY A.Thermal stability of aluminum cold rolled to large strain[J].Journal of Materials Science,2008,43:6254-6259.
    [5]ZI A,STULIKOVA I,SMOLA B.Response of aluminum processed by extrusion preceded ECAP to isochronal annealing[J].Materials Science and Engineering A,2010,527:1469-1472.
    [6]YU T,HANSEN N,HUANG X.Recovery by triple junction motion in aluminium deformed to ultrahigh strains[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2011,467:3039-3065.
    [7]MISHIN O V,GODFREY A,JUUL JENSEN D,HANSEN N.Recovery and recrystallization in commercial purity aluminum cold rolled to an ultrahigh strain[J].Acta Materialia,2013,61:5354-5364.
    [8]YU T,HANSEN N,HUANG X.Linking recovery and recrystallization through triple junction motion in aluminum cold rolled to a large strain[J].Acta Materialia,2013,61:6577-6586.
    [9]YU C Y,SUN P L,KAO P W,CHANG C P.Evolution of microstructure during annealing of a severely deformed aluminum[J].Materials Science and Engineering A,2004,366:310-317.
    [10]FERRASSE S,SEGAL V M,ALFORD F.Texture evolution during equal channel angular extrusion(ECAE)[J].Materials Science and Engineering A,2004,372:235-244.
    [11]CAO W Q,GODFREY A,LIU W,LIU Q.Annealing behavior of aluminium deformed by equal channel angular pressing[J].Materials Letters,2003,57:3767-3774.
    [12]CAO W Q,GODFREY A,LIU W,LIU Q.EBSP study of the annealing behavior of aluminum deformed by equal channel angular processing[J].Materials Science and Engineering A,2003,360:420-425.
    [13]KWAN C,WANG Z,KANG S B.Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding(ARB)processed Al alloy 1100[J].Materials Science and Engineering A,2008,480:148-159.
    [14]MOGHANAKI S K,KAZEMINEZHAD M,LOGéR.Heating rate effect on particle stimulated nucleation and grains structure during non-isothermal annealing of multi-directionally forged solution treated AA2024[J].Materials Characterization,2017,127:317-324.
    [15]POORGANJI B,SEPEHRBAND P,JIN H,ESMAEILI S.Effect of cold work and non-isothermal annealing on the recrystallization behavior and texture evolution of a precipitation-hardenable aluminum alloy[J].Scripta Materialia,2010,63:1157-1160.
    [16]SCH?FER C,MOHLES V,GOTTSTEIN G.Modeling the effect of heating rate on recrystallization texture evolution in AA3103[J].Advanced Engineering Materials,2010,12:981-988.
    [17]SUN N,PATTERSON R B,SUNI P J,DOHERTY D R,WEILAND H,KADOLKAR P,BLUE A C,THOMPSON B G.Effect of heating rate on recrystallization of twin roll cast aluminum[J].Metallurgical and Materials Transactions A,2008,39:165-170.
    [18]SHEN F,WANG B,YI D,LIU H,TANG C,SHOU W.Effects of heating rate during solid-solution treatment on microstructure and fatigue properties of AA2524 T3 Al-Cu-Mg sheet[J].Materials&Design,2016,104:116-125.
    [19]KHANI MOGHANAKI S,KAZEMINEZHAD M,LOGéR.Effect of concurrent precipitation on the texture evolution during continuous heating of multi directionally forged solution treated Al-Cu-Mg alloy[J].Materials Characterization,2017,131:399-405.
    [20]ATTALLAH M M,STRANGWOOD M,DAVIS C L.Influence of the heating rate on the initiation of primary recrystallization in a deformed Al-Mg alloy[J].Scripta Materialia,2010,63:371-374.
    [21]SEPEHRBAND P,WANG X,JIN H,ESMAEILI S.Microstructural evolution during non-isothermal annealing of a precipitationhardenable aluminum alloy:Experiment and simulation[J].Acta Materialia,2015,94:111-123.
    [22]XIA S L,MA M,ZHANG J X,WANG W X,LIU W C.Effect of heating rate on the microstructure,texture and tensile properties of continuous cast AA 5083 aluminum alloy[J].Materials Science and Engineering A,2014,609:168-176.
    [23]SUMMERS P T,CASE S W,LATTIMER B Y.Residual mechanical properties of aluminum alloys AA5083-H116 and AA6061-T651after fire[J].Engineering Structures,2014,76:49-61.
    [24]KHANI MOGHANAKI S,KAZEMINEZHAD M,LOGéR.Recrystallization behavior of multi-directionally forged over-aged and solution treated Al-Cu-Mg alloy during non-isothermal annealing[J].Materials&Design,2017,132:250-256.
    [25]ESTRIN Y,TóTH L S,MOLINARI A,BRéCHET Y.Adislocation-based model for all hardening stages in large strain deformation[J].Acta Materialia,1998,46:5509-5522.
    [26]TóTH L S,MOLINARI A,ESTRIN Y.Strain hardening at large strains as predicted by dislocation based polycrystal plasticity model[J].Journal of Engineering Materials and Technology,2002,124:71-77.
    [27]KUHLMANN D,MASING G,RAFFELSIEPER J.On the theory of recovery[J].Zeitschrift Fur Metallkunde,1949,40:241-246.
    [28]NES E.Recovery revisited[J].Acta Metallurgica et Materialia,1995,43:2189-2207.
    [29]BORELIUS G,BERGLUND S,SJOBERG S.Measurements on the evolution of heat during the recovery of cold-worked metals[J].Arkiv For Fysik,1953,6:143-149.
    [30]VANDERMEER R A,HANSEN N.Recovery kinetics of nanostructured aluminum:Model and experiment[J].Acta Materialia,2008,56:5719-5727.
    [31]YU T B,HANSEN N.Recovery kinetics in commercial purity aluminum deformed to ultrahigh strain:Model and experiment[J].Metallurgical and Materials Transactions A,2016,47:4189-4196.
    [32]YU T B,HANSEN N.A model for recovery kinetics of aluminum after large strain[J].Materials Science Forum,2012,715-716:374-379.
    [33]SUMMERS P T,MOURITZ A P,CASE S W,LATTIMER B Y.Microstructure-based modeling of residual yield strength and strain hardening after fire exposure of aluminum alloy 5083-H116[J].Materials Science and Engineering A,2015,632:14-28.
    [34]HOSSEINI E,KAZEMINEZHAD M.A hybrid model on severe plastic deformation of copper[J].Computational Materials Science,2009,44:1107-1115.
    [35]HOSSEINI E,KAZEMINEZHAD M.ETMB model investigation of flow softening during severe plastic deformation[J].Computational Materials Science,2009,46:902-905.
    [36]KAZEMINEZHAD M,HOSSEINI E.Modeling of induced empirical constitutive relations on materials with FCC,BCC,and HCPcrystalline structures:Severe plastic deformation[J].International Journal of Advanced Manufacturing Technology,2010,47:1033-1039.
    [37]TóTH L S.Modelling of strain hardening and microstructural evolution in equal channel angular extrusion[J].Computational Materials Science,2005,32:568-576.
    [38]BAIK S C,ESTRIN Y,KIM H S,HELLMIG R J.Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing[J].Materials Science and Engineering A,2003,351:86-97.
    [39]KAZEMINEZHAD M,HOSSEINI E.Coupling kinetic dislocation model and Monte Carlo algorithm for recrystallized microstructure modeling of severely deformed copper[J].Journal of Materials Science,2008,43:6081-6086.
    [40]HOSSEINI E,KAZEMINEZHAD M.The effect of ECAP die shape on nano-structure of materials[J].Computational Materials Science,2009,44:962-967.
    [41]MCKENZIE P W J,LAPOVOK R,ESTRIN Y.The influence of back pressure on ECAP processed AA6016:Modeling and experiment[J].Acta Materialia,2007,55:2985-2993.
    [42]HOSSEINI E,KAZEMINEZHAD M.Dislocation structure and strength evolution of heavily deformed tantalum[J].International Journal of Refractory Metals and Hard Materials,2009,27:605-610.
    [43]HOSSEINI E,KAZEMINEZHAD M,MANI A,RAFIZADEH E.On the evolution of flow stress during constrained groove pressing of pure copper sheet[J].Computational Materials Science,2009,45:855-859.
    [44]PARVIN H,KAZEMINEZHAD M.Development of a dislocation density based model considering the effect of stacking fault energy:Severe plastic deformation[J].Computational Materials Science,2014,95:250-255.
    [45]ESTRIN Y,MOLOTNIKOV A,DAVIES C H J,LAPOVOK R.Strain gradient plasticity modelling of high-pressure torsion[J].Journal of the Mechanics and Physics of Solids,2008,56:1186-1202.
    [46]HUMPHREYS F J,HATHERLY M.Recrystallization and related annealing phenomena[M].2nd ed.Amsterdam:Elsevier,2004.
    [47]GODFREY A,CAO W Q,LIU Q,HANSEN N.Stored energy,microstructure,and flow stress of deformed metals[J].Metallurgical and Materials Transactions A,2005,36:2371-2378.
    [48]ZHU Q F,WANG W J,ZHAO Z H,ZUO Y B,CUI J Z.Effect of multi-forging condition on deformed structure and mechanical properties of a 99.995 percent high purity aluminum[J].Materials Science Forum,2015,817:360-366.
    [49]ZHU Q,LI L,BAN C,ZHAO Z,ZUO Y,CUI J.Structure uniformity and limits of grain refinement of high purity aluminum during multi-directional forging process at room temperature[J].Transactions of Nonferrous Metals Society of China,2014,24:1301-1306.
    [50]VALIEV R Z,ESTRIN Y,HORITA Z,LANGDON T G,ZECHETBAUER M J,ZHU Y T.Producing bulk ultrafine-grained materials by severe plastic deformation[J].JOM,2006,58:33-39.
    [51]GUPTA R,PANTHI S K,SRIVASTAVA S.Assessment of various properties evolved during grain refinement through multi-directional forging[J].Reviews on Advanced Materials Science,2016,46:70-85.
    [52]HUMPHREYS F J.A unified theory of recovery,recrystallization and grain growth,based on the stability and growth of cellular microstructures-I.The basic model[J].Acta Materialia,1997,45:4231-4240.
    [53]ATKINSON M.On the credibility of ultra rapid annealing[J].Materials Science and Engineering A,2003,354:40-47.
    [54]FURU T,?RSUND R,NES E.Subgrain growth in heavily deformed aluminium-Experimental investigation and modelling treatment[J].Acta Metallurgica et Materialia,1995,43:2209-2232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700