用户名: 密码: 验证码:
油茶细根时空分布动态对施钾水平的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Fine Root Growth of Camellia oleifera to Potassium Application Level
  • 作者:刘俊萍 ; 喻苏琴 ; 游璐 ; 连鲁楠 ; 王翰琨 ; 曾进 ; 程离 ; 秦健 ; 刘小平 ; 胡冬南
  • 英文作者:LIU Jun-ping;YU Su-qin;YOU Lu;LIAN Lu-nan;WANG Han-kun;ZENG Jin;CHENG Li;QIN Jian;LIU Xiao-ping;HU Dong-nan;School of Forestry,Jiangxi Agricultural University,Jiangxi Provincial Key Laboratory of Forest Cultivation;Jiangxi Spark Agricultural Forestry Technology Development Co.Ltd;
  • 关键词:油茶细根 ; 微根管 ; 钾肥 ; 生长动态 ; 根长密度
  • 英文关键词:fine root of Camellia oleifera;;minirhizotron;;potassium fertilizer;;growth dynamics;;root length density
  • 中文刊名:LYKX
  • 英文刊名:Forest Research
  • 机构:江西农业大学林学院江西省森林培育重点实验室;江西星火农林科技发展有限公司;
  • 出版日期:2019-02-15
  • 出版单位:林业科学研究
  • 年:2019
  • 期:v.32
  • 基金:国家自然科学基金项目(31560218);; 江西省重点研发计划项目(20161BBF60080)
  • 语种:中文;
  • 页:LYKX201901006
  • 页数:8
  • CN:01
  • ISSN:11-1221/S
  • 分类号:34-41
摘要
[目的]为了解不同施钾水平对油茶(Camellia oleifera Abel)细根时空分布动态的影响。[方法]采用微根管(minirhizotron)动态监测技术,以2011年种植的油茶林为试材,在等养分条件下,2015年设置不施钾K0(N_(92)P_(48)K_0)、低钾K1(N_(92)P_(48)K_(135))、高钾K2(N_(92)P_(48)K_(270)) 3个处理,2016年6月起对林地0~40 cm土壤剖面的油茶细根的时空分布动态进行了观测。[结果]表明:K1、K2处理增大了油茶细根根尖数、平均直径、总根长以及总表面积,并且施钾有利于油茶根长密度及净生长速率的增大。不施钾处理(K0)下的油茶细根主要分布在20~40 cm土层,低钾(K1)处理极显著提高了0~20 cm土层细根的根尖数、根表面积及根长密度,而高钾(K2)处理对上层土的细根无显著促进作用。K0处理的总根长、总根尖数、总表面积以及根长密度在2016年秋季出现下降趋势,而K1、K2处理明显减缓了其秋季细根形态指标降低的趋势;油茶的平均直径在整个生育期内变化幅度较大,各处理都在2017年3月出现峰值,K0、K1、K2三个处理下的平均直径峰值分别为0.631、0.750、0.788 mm;总根长、总根尖数、总表面积以及根长密度都在2017年5月出现峰值;K1处理下的净生长速率在2017年3月—2017年5月达到峰值,并显著高于对照;[结论]油茶细根的季节生长节律为春季较高的单峰型,细根直径范围为0.5~0.8 mm;合理适量施钾肥有助于油茶根系的生长发育,提高根系活力,增大细根的吸收面积;施钾肥能够促进光合产物向根系分配,有助于实现养分的高效循环利用。
        [Objective] To study the effect of different potassium levels on spatial and temporal distribution dynamics of Camellia oleifera Abel fine root.[Method]The dynamic monitoring technique of minirhizotron was used in this study. The C. oleifera plantation planted in 2011 was used as experimental material under the condition of equal nutrient, K0(N_(92)P_(48)K_0), K1(N_(92)P_(48)K_(135)) and K2(N_(92)P_(48)K_(270)) were applied to investigate the growth dynamics of fine roots of C. oleifera in 0~40 cm soil profile in the forestland. [Result] The results showed that the treatments K1 and K2 increased the root tip number, average diameter, total root length, and total surface area of C. oleifera, and the application of potassium was beneficial to the increase of root length and net growth rate of C. oleifera. The fine roots of C. oleifera under control treatment were mainly distributed in the 20~40 cm soil layer. The treatment with low K(K1) significantly increased the number of root tips, root surface area, and root length of fine roots in 0~20 cm soil layers. Potassium(K2) treatment had no significant effect on the fine roots of the upper layer soil. The total root length, total root tip number, total surface area and root length density of K0 decreased in autumn 2016, while the treatments K1 and K2 slowed down the decline of fine root morphology in autumn. The ARD of C. oleifera varied greatly during the whole growth period, and the peak value of ARD appeared in March 2017. The ARD peak values were 0.631 mm, 0.750 mm and 0.788 mm under K0, K1 and K2 treatments respectively. The total root length, total root tips, total surface area and root length density all peaked in May 2017. The net growth rate under K1 peaked from March 2017 to May 2017 and was significantly higher than that of the control. [Conclusion] The seasonal growth rhythm of fine root of C. oleifera follows a single peak with a high spring in the range of 0.5~0.8 mm. Appropriate amount of K fertilizer is helpful to the growth and development of root system of C. oleifera, increase the root activity and the absorption area of fine root. Potassium fertilizer can promote the distribution of photosynthetic products to the root system, which helps to achieve efficient recycling of nutrients.
引文
[1] 胡冬南, 牛德奎, 张文元, 等. 钾肥水平对油茶果实性状及产量的影响[J]. 林业科学研究, 2015, 28( 2): 243-248.
    [2] 张文元, 牛德奎, 郭晓敏, 等. 施钾水平对油茶养分积累和产油量的影响[J]. 植物营养与肥料学报,2016, 22(3): 863-868.
    [3] 俞元春, 白玉杰, 俞小鹏, 等. 油茶林施肥效应研究概述[J]. 林业科技开发, 2013, 27(2): 1-4.
    [4] 牛学礼, 南志标. 运用微根管技术研究草地植物细根的进展[J]. 草业学报, 2017, 26(11): 205-215.
    [5] Yuan Y D, Yang Y S, Chen G S, et al. Fine root longevity of a Cunninghamia lanceolata plantation estimated by minirhizotrons [J]. Journal of Subtropical Resources and Environment, 2009, 4(2): 47-52.
    [6] 陈展, 于浩, 尚鹤, 等. 臭氧胁迫对树木根系影响研究进展[J]. 林业科学研究, 2016, 29(3): 455-463.
    [7] 张永清, 毕润成, 庞春花, 等. 不同品种春小麦根系对低钾胁迫的生物学响应[J]. 西北植物学报, 2006, 26(6): 1190-1194.
    [8] 张志勇, 王清连, 李召虎, 等. 缺钾对棉花幼苗根系生长的影响及其生理机制[J]. 作物学报, 2009, 35(4): 718-723.
    [9] Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J]. Proc Natl Acad, 2004, 101(23): 8827-8832.
    [10] Johnson M G, Tingey D T, Philips D L, et al. Advancing fine root research with minirhizotrons[J]. Environmental and Experimental Botany, 2001, 45(3): 263-289.
    [11] Shibata H,Hiura T, Tanaka Y, et al. Carbon cycling and budget in a forested basin of southwestern Hokkaido, northern Japan[J]. Ecological Research, 2005, 20(3): 325-331.
    [12] Mei L, Wang Z Q, Cheng Y H, et al. A review: factors influencing fine root longevity in forest ecosystems[J]. Acta Phytoecologica Sinica, 2004, 28(4): 704-710.
    [13] Chen X Y, Eamus D, Hutley L B. Seasonal patterns of fine-root productivity and turnover in a tropical savanna of northern Australia[J]. Journal of Tropic Ecology, 2004, 20(2): 221-224.
    [14] 张志山, 李新荣, 张景光, 等. 用Minirhizotrons观测柠条根系生长动态[J].植物生态学报, 2006, 30(3): 457-464.
    [15] Gordon W S, Jackson R B. Nutrient concentrations in fine roots[J]. Ecology, 2000, 81(1): 275-280.
    [16] Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J]. Oecologia, 2000, 125(3): 389-399.
    [17] Zhang X Q, Wu K H, Murach D. A review of methods for fine-root production and turnover of trees[J]. Acta Ecologica Sinica, 2000, 20(5): 815-883.
    [18] 张亚雄. 蓄水坑灌下苹果树细根动态及其影响因素的研究[D]. 太原:太原理工大学, 2017.
    [19] 周长富, 姚小华, 林萍, 等. 油茶果实发育特性及水分、油脂含量动态分析[J]. 扬州大学学报, 2013, 34(3): 49-53+82.
    [29] 王立梅, 刘奕清, 阮玉娟, 等. 植物钾素研究进展[J]. 中国园艺文摘, 2015(5): 71-72.
    [20] Sánchez-Calderón L, López-Bucio J, Chacón-López A, et al. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana[J]. Plant Cell Physiol, 2005, 46(1): 174-184.
    [21] 宋美珍, 杨惠元, 蒋国柱. 黄淮海棉区钾肥效应研究[J]. 棉花学报, 1993, 5(1): 73-78.
    [22] 潘艳花, 马忠明, 吕晓东, 等. 不同供钾水平对西瓜幼苗生长和根系形态的影响[J]. 中国生态农业学报, 2012, 20(5): 536-541.
    [23] Persson H.Root dynamics in a young Scots pine stand in Central Sweden[J]. Oikos.1978, 30(3): 508-519.
    [24] Mc Claugherty C A, Aber J D, Melillo J M, The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems[J]. Ecology, 1982, 63(5): 1481-1490.
    [25] 陈建文, 王孟本, 史建伟. 柠条人工林幼林与成林细根动态比较研究[J]. 生态学报, 2011, 31(22): 6978-6988.
    [26] Farrar J F, Jones D L. The control of carbon acquisition by roots[J]. New Phytologist, 2000, 147(1): 43-53.
    [27] Mou P, Robert H J, Tan Z Q, et al. Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous[J]. Plant and Soil, 2013, 364: 373-384.
    [28] 梅莉, 王政权, 程云环, 等. 林木细根寿命及其影响因子研究进展[J]. 植物生态学报, 2004, 28(4): 704-710.
    [29] Zou X H, Wu P F, Chen N L, et al. Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil[J]. Canadian Journal of Forest Research, 2014, 45: 402-410.
    [30] 汤丹, 龚榜初, 江锡兵, 等. 不同甜柿砧穗组合根系差异性研究[J].林业科学研究, 2016, 29(1): 85-92.
    [31] 沈仁芳, 孙波, 施卫明, 等. 地上-地下生物协同调控与养分高效利用[J]. 中国科学院院刊, 2017, 32(6): 566-574.
    [32] 赵其国, 沈仁芳, 滕应. 中国土壤安全“一带一路”发展战略的思考[J]. 生态环境学报, 2016, 25(3): 365-371.
    [33] 杨林章, 孙波. 中国农田生态系统养分循环和平衡及其管理.[M]. 北京:科学出版社, 2008.
    [34] 于飞, 施卫明. 近10年中国大陆主要粮食作物氮肥利用率分析[J]. 土壤学报, 2015, 52(6): 1311-1324.
    [35] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915-924.
    [36] Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological linkages between aboveground and below ground biota[J]. Science, 2004, 304(5677): 1629-1633.
    [37] 秘洪雷, 兰再平, 孙尚伟, 等, 滴灌栽培杨树人工林细根空间分布特征[J]. 林业科学研究, 2017, 30(6): 946-953.
    [38] Wang H Y, Dai W, Yang X J, et al. Spatial heterogeneity of soil organic carbon and nutrients in low mountain area of Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2460-2468.
    [39] Mou P, Jones R H, Mitchell R J, et al. Spatial distribution of roots in Sweetgum and Loblolly pine monocultures and relations with a-bove-ground biomass and soil nutrients [J]. Functional Ecology, 1995, 9(4): 689-698.
    [40] 周政贤. 油茶生态习性、根系发育及垦覆效果调查研究[J]. 林业科学, 1963, 8(4): 336-346.
    [41] 王娜, 程瑞梅, 肖文发, 等. 三峡库区马尾松细根分解及其养分释放[J]. 林业科学研究, 2017, 30(1): 18-24.
    [42] 闫小莉, 戴腾飞, 邢长山, 等. 水肥耦合对欧美108杨幼林表土层细根形态及分布的影响[J]. 生态学报, 2015, 35(11): 3692-3701.
    [43] 张小全. 环境因子对树木细根生物量、生产与周转的影响[J]. 林业科学研究, 2001, 14(5): 566-573.
    [44] 程云环, 韩有志, 王庆成, 等. 落叶松人工林细根动态与土壤资源有效性的研究[J]. 植物生态学报, 2005, 29(3): 403-410.
    [45] 李帅锋, 贾呈鑫卓, 杨利华, 等. 林龄对思茅松人工林根系生物量的影响[J]. 林业科学研究, 2018, 31(2): 26-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700