用户名: 密码: 验证码:
关键参数对激光等离子体热核与激波相互作用过程的影响规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of key parameters on the interaction of the laser induced plasma hot core and shock wave
  • 作者:文明 ; 王殿恺 ; 王伟东
  • 英文作者:Wen Ming;Wang Diankai;Wang Weidong;State Key Laboratory of Laser Propulsion & Application, Space Engineering University;
  • 关键词:激光减阻 ; 等离子体热核 ; 正激波 ; 激光能量 ; 纹影
  • 英文关键词:laser induced drag reduction;;plasma hot core;;normal shock;;laser energy;;schlieren
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:航天工程大学激光推进及其应用国家重点实验室;
  • 出版日期:2018-12-27 16:07
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.294
  • 基金:国家自然科学基金面上项目(11372356)
  • 语种:中文;
  • 页:HWYJ201904014
  • 页数:7
  • CN:04
  • ISSN:12-1261/TN
  • 分类号:95-101
摘要
针对激光减阻中激光等离子体热核与正激波相互作用物理现象,运用高精度纹影测量技术研究分析了激光等离子体热核在正激波冲击下的流动结构特性,获得了激光能量与激波速度两个关键因素的影响规律。实验结果表明:在正激波的冲击下,热核宽度呈先上升然后稳定并有减小的趋势,入射激光能量越高,热核在激波冲击下的宽度越大;热核的长度在正激波冲击下迅速减小然后以固定的速度线性增长,增长速度约为入射激波速度的19%。研究结论为实际应用中有效增强减阻效果和延长持续时间提供依据,相关方法和结果对激光等离子体主动流动控制研究也具有很好的参考价值。
        To study the phenomenon of interaction between laser induced plasma hot core and normal shock wave in application of laser induced drag reduction, high-precision schlieren measurement technology was used to study and analyze the flow structure characteristics of laser induced plasma hot core under the impact of normal shock wave, and the influence law of laser energy and shock speed was obtained. The experimental results show that under the impact of the normal shock wave, the width of the hot core is firstly increased and then stabilized and decreased. The higher the incident laser energy is,the larger the width of the hot core is. The length of the hot core rapidly decreases under the impact of normal shock and then grows linearly, with a growth rate of approximately 19% of the incident shock speed. A basis for effectively enhancing the drag reduction effect and prolonging the duration in practical applications can be provided by the conclusions. The relevant methods and results also have a good reference value for the study of laser plasma active flow control.
引文
[1] Kremeyer K, Sebastian K, Shu C W. Computational study of shock mitigation and drag reduction by pulsed energy lines[J]. AIAA Journal, 2006, 44(8):1720-1731.
    [2] Guvernyuk S V, Samoilov A B. Control of supersonic flow around bodies by means of a pulsed heat source[J]. Tech Phys Lett, 1997, 23(5):333-336.
    [3] Oliveira C, Minucci M A, Toro P G, et al. Bow shock wave mitigation by laser-plasma energy addition in hypersonic flow[J]. Journal of Spacecraft and Rockets, 2008, 45(5):921-927.
    [4] Hong Junwu, Chen Xiaodong, Zhang Yulun, et al. The primary numerical research of active control technology in flow[J]. Acta Aerodynamica Sinica, 2005, 23(4):402-407.(in Chinese)洪俊武,陈晓东,张玉伦,等.主动流动控制技术的初步数值研究[J].空气动力学学报, 2005, 23(4):402-407.
    [5] Minuc ci M A S, Chanes J B, Myrabo L N, et al.Investigation of a laser-supported directed-energy"air spike"in hypersonic flow[J]. Journal of Spacecraft and Rockets,2003, 40(1):133-136.
    [6] Oliveira A C, Minucci M A S, Toro P G P, et al. Schlieren visualization technique applied to the study of laser-induced breakdown in low density hypersonic Flow[C]//Beamed Energy Propulsion:Fourth International Symposium on Beamed Energy Propulsion, AIP Publishing, 2006, 830(1):504-509.
    [7] Oliveira A C, Minucci M A, Myrabo L N, et al. Bow shock wave mitigation by laser-plasma energy addition in hypersonic flow[J]. Journal of Spacecraft and Rockets,2008, 45(5):921-927.
    [8] Sasoh A, Kim J H, Yamashita K, et al. Fly by light power:improvement of supersonic aerodynamic performance with high-repetitive-rate energy depositions:examination of truncated cones[R]. AIAA Paper, 2011-3999, 2011.
    [9] Schülein E, Zheltovodov A A, Pimonov E A, et al. Study of the bow shock interaction with laser-pulse-heated air bubbles[R]. AIAA Paper, 2009-3568, 2009.
    [10] Ogino Y, Ohnishi N, Taguchi S, et al. Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition[J]. Physics of Fluids, 2009, 21(6):0661021.
    [11] Niederhaus J, Greenough A, Oakley G, et al. Computational parameter study for the three-dimensional shock-bubble interaction[J]. Journal of Fluid Mechanics, 2008, 594:85-124.
    [12] Sasoh A, Sekiya Y, Sakai T, et al. Supersonic drag reduction with repetitive laser pulses through a blunt body[R]. AIAA Paper, 2009-3585, 2009.
    [13] Azarova O A. Supersonic flow control using combined energy deposition[J]. Aerospace, 2015, 2(1):118-134.
    [14] Zel′dovich Y B, Raizer Y P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena[M]. Mineola,New York:Dover Publications, Inc, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700