用户名: 密码: 验证码:
巢湖蓝藻水华衰亡初期营养盐浓度变化的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Studies on the Changes of Nutrient Salts Concentration at the Initial Stage of the Cyanobacteria Bloom Decay in Lake Chaohu
  • 作者:李慧 ; 徐方 ; 杨柳 ; 宋春雷 ; 周易勇 ; 陈文
  • 英文作者:LI Hui;XU Fang;YANG Liu;SONG Chunlei;ZHOU Yiyong;CHEN Wen;School of Material and Chemical Engineering, Tongren University;Tongren Municipal Environmental Monitoring Station;State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences;
  • 关键词:巢湖 ; 蓝藻水华 ; 沉积物 ; 酶活性 ; ;
  • 英文关键词:Lake Chaohu;;cyanobacteria bloom;;sediment;;enzyme activity;;nitrogen;;phosphorus
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:铜仁学院材料与化学工程学院;铜仁市环境监测站;中国科学院水生生物研究所淡水生态与生物技术国家重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:v.42
  • 基金:国家自然科学基金(41701557,41573110,41877381);; 贵州省科技计划项目(黔科合基础[2017]1187);; 水体污染控制与治理科技重大专项(2017ZX07603);; 博士科研启动项目(trxyDH1604);; 化学工程与技术省级重点学科(黔学位合字ZDXK[2017]8号)
  • 语种:中文;
  • 页:FJKS201905024
  • 页数:7
  • CN:05
  • ISSN:42-1245/X
  • 分类号:167-173
摘要
在巢湖采集泥样进行加藻培养实验,监测培养过程中的藻剩余量、上覆水及间隙水氮和磷浓度、沉积物各胞外酶活性、亚铁和总铁含量及各形态磷含量等相关指标的变化。结果表明,随着培养时间的增加,藻剩余量下降,藻剩余量与时间的关系符合公式:y=2.301 1×e~(-0.054 6x)(R~2=0.898 1,P<0.01)。与对照组相比,加藻组间隙水和上覆水氨氮(NH_4~+-N)浓度大幅度上升,说明巢湖蓝藻水华衰亡初期,藻类自身矿化及沉积物均大量释放NH_4~+-N。加藻培养后第4天开始,间隙水溶解反应性磷明显低于对照组相应值,主要是由于微生物已获得充足的碳源和氮源,为了提高微生物生产力需要与之匹配的磷含量而吸收间隙水中的磷。加入藻类碎屑培养后,沉积物碱性磷酸酶活性明显高于对照组相应值,说明藻类有机质和高浓度NH_4~+-N均可诱导微生物分泌碱性磷酸酶,但加藻组酸提取有机磷(磷酸酶的底物)的含量并未明显降低;整个培养过程中,加藻组氨肽酶活性均低于对照组相应值,说明高浓度氨对氨肽酶具有抑制作用。加藻培养后,沉积物脱氢酶活性和亚铁与总铁的比值均低于对照组相应值,但沉积物铁结合态磷(Fe(OOH)-P)含量明显高于对照组相应值。表明藻类碎屑分解过程中,沉积物Fe(OOH)-P厌氧释放的少,且藻类自身矿化产生的磷以Fe(OOH)-P的形式固定在沉积物中。
        In Lake Chaohu, mud samples were collected for algal culture experiments, and the changes of related indicators in the culture process, such as the amount of algae residue, the concentration of nitrogen and phosphorus in overlying water and interstitial water, the activity of extracellular enzymes, the content of ferrous and total iron, and the content of different phosphorus forms in sediments were monitored. The results showed that with the increase of culture time, the amount of algal residue decreased, and the relationship between algal residue and time was consistent with the formula:y=2.301 1×e~(-0.054 6x)(R~2=0.898 1, P<0.01). Compared with the control group, the interstitial water and the overlying water ammonia nitrogen(NH_4~+-N) concentrations in the alga group significantly increased, indicating that the algal mineralization and sediment released NH_4~+-N in large amounts in the early period of the cyanobacteria bloom's decay in Lake Chaohu. The dissolved reactive phosphorus in interstitial water was significantly lower than that in control group starting from the fourth day after algal culture, mainly because microorganisms had obtained sufficient carbon and nitrogen sources, and the phosphorus in interstitial water was absorbed in order to improve the productivity of microorganisms. After adding algal culture, alkaline phosphatase activity in sediment was significantly higher than that of the control group, indicating that both algae organic matter and high concentration of NH_4~+-N could induce microorganisms to secrete alkaline phosphatase, but the content of acid-soluble organic phosphorus(the substrate of phosphatase) in algal group was not significantly reduced. In the whole process of culture, the activity of aminopeptidase in algal group was lower than that of the control group, indicating that high concentration of ammonia had an inhibitory effect on the aminopeptidase. After adding algal culture, the dehydrogenase activity and the ratio of ferrous iron to total iron in sediment were lower than that of the control group, but the content of iron binding phosphorus(Fe(OOH)-P) in the sediment was significantly higher than that of the control group. It showed that the anaerobic release of little Fe(OOH)-P from sediments was caused by the breakdown of algal debris, and the phosphorus produced by the mineralization of algae was fixed in the sediments in the form of Fe(OOH)-P.
引文
[1]吴庆龙,谢平,杨柳燕,等.湖泊蓝藻水华生态灾害形成机理及防治的基础研究[J].地球科学进展,2008,23(11):1115-1123.Wu Qinglong,Xie Ping,Yang Liuyan,et al.Ecological consequences of cyanobacteria blooms in lakes and their countermeasures[J].Advances in Earth Science,2008,23(11):1115-1123.
    [2]Renaud P E,Riedel A,Michel C,et al.Seasonal variation in benthic community oxygen demand:a response to an ice algal bloom in the Beaufort Sea,Canadian Arctic[J].Journal of Marine Systems,2007,67(1/2):1-12.
    [3]李文朝,陈开宁,吴庆龙,等.东太湖水生植物生物质腐烂分解实验[J].湖泊科学,2001,13(4):331-336.Li Wenchao,Chen Kaining,Wu Qinglong,et al.Experimental studies on decomposition process of aquatic plant material from east Taihu Lake[J].Journal of Lake Science,2001,13(4):331-336.
    [4]Sfriso A,Marcomini A.Macrophyte production in a shallow coastal lagoon.PartⅡ:coupling with sediment,SPM and tissue carbon,nitrogen and phosphorus concentrations[J].Marine Environmental Research,1999,47(3):285-309.
    [5]李雷,戴万宏.巢湖水体富营养化污染现状及防治对策[J].中国水土保持,2009(7):55-57.Li Lei,Dai Wanhong.Present situation of eutrophication pollution in Lake Chaohu and its prevention and control measures[J].Soil and Water Conservation in China,2009(7):55-57.
    [6]Murphy J,Riley J P.A modified single solution method for determination of phosphate in natural waters[J].Analytica Chimica Acta,1962,26(1):31-36.
    [7]魏复盛.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002:258-285.Wei Fusheng.Water and Wastewater Monitoring and Analysis Methods[M].4th Edition.Beijing:China Environmental Science Press,2002:258-285.
    [8]Boetius A,Lochte K.Effect of organic enrichments on hydrolytic potentials and growth of bacteria in deep sea sediments[J].Marine Ecology Progress Series,1996,140(1/2/3):239-250.
    [9]Sayler G S,Puziss M,Silver M.Alkaline-phosphatase assay for freshwater sediments-application to perturbed sediment systems[J].Applied and Environmental Microbiology,1979,38(5):922-927.
    [10]黄代中,肖文娟,刘云兵,等.浅水湖泊沉积物脱氢酶活性的测定及其生态学意义[J].湖泊科学,2009,21(3):345-350.Huang Daizhong,Xiao Wenjuan,Liu Yunbing,et al.Determination of dehydrogenase activity in sediment of shallow lakes and its ecological significance[J].Journal of Lake Science,2009,21(3):345-350.
    [11]鲍士旦.土壤农化分析[M].第三版.北京:中国农业出版社,2000:225-227.Bao Shidan.Soil Agrochemical Analysis[M].3rd Edition.Beijing:China Agricultural Press,2000:225-227.
    [12]Golterman H L.Fractionation of sediment phosphate with chelating compounds:a simplification,and comparison with other methods[J].Hydrobiologia,1996,335(1):87-95.
    [13]李慧.湖泊与河流沉积物有机质分解驱动磷释放的机制研究[D].武汉:中国科学院水生生物研究所,2015:22-23,49.Li Hui.Study on Mechanisms of Phosphorus Release Driven by Sediment Organic Matter Decomposition in Lakes and Rivers[D].Wuhan:Institute of Hydrobiology,Chinese Academy of Sciences,2015:22-23,49.
    [14]Lan Y,Cui BS,You ZY,et al.Litter decomposition of six macrophytes in an eutrophic shallow lake(Baiyangdian Lake,China)[J].Clean-Soil Air Water,2012,40(10):1159-1166.
    [15]Longhi Daniele1,Bartoli Marco,Viaroli Pierluigi.Decomposition of four macrophytes in wetland sediments:organic matter and nutrient decay and associated benthic processes[J].Aquatic Botany,2008,89(3):303-310.
    [16]Atiana G Elumeeva,Vladimir G Onipchenko,Asem AAkhmetzhanova,et al.Stabilization versus decomposition in alpine ecosystems of the Northwestern Caucasus:the results of a tea bag burial experiment[J].Journal of Mountain Science,2018,15(8):1633-1641.
    [17]Guo Jing,Wang Guibin,Geng Quanzheng,et al.Decomposition of tree leaf litter and crop residues from ginkgo agroforestry systems in Eastern China:an in situ study[J].Journal of Soils and Sediments,2018,18(4):1424-1431.
    [18]Lomstein B A,Guldberg L B,Hansen J.Decomposition of Mytilus edulis:the effect on sediment nitrogen and carbon cycling[J].Journal of Experimental Marine Biology and Ecology,2006,329(2):251-264.
    [19]Coleman G,Abbas All B,Sutherland J,et al.A comparison of the characteristics of extracellular protein secretion by a Gram-positive and a Gram-negative bacterium[A].In:Chaloupka J and Krumphanzl V(eds.)Extracellular Enzymes of Microorganisms[M].New York:Plenum Press,1987:13-21.
    [20]Fontaine S,Mariotti A,Abbadie L.The priming effect of organic matter:a question of microbial competition[J].Soil Biology&Biochemistry,2003,35(6):837-843.
    [21]Zhou Y Y,Li J Q,Zhang M.Vertical variations in kinetics of alkaline phosphatase and P species in sediments of a shallow Chinese eutrophic lake(Lake Donghu)[J].Hydrobiologia,2001,450(1/2/3):91-98.
    [22]刘云兵.富营养化浅水湖泊沉积物磷释放机制与控制技术研究[D].武汉:中国科学院水生生物研究所,2010:39-40.Liu Yunbing.Study on Mechanisms and Controlling Technologies of Sediment Phosphorus Release in Shallow Eutrophic Lakes[D].Wuhan:Institute of Hydrobiology,Chinese Academy of Sciences,2010:39-40.
    [23]Johnson D,Moore L,Green S,et al.Direct and indirect effects of ammonia,ammonium and nitrate on phosphatase activity and carbon fluxes from decomposing litter in peatland[J].Environmental Pollution,2010,158(10):3157-3163.
    [24]Hernandez I,Perez Pastor A,Llorens J L P.Ecological significance of phosphomonoesters and phosphomonoesterase activity in a small Mediterranean River and its estuary[J].Aquatic Ecology,2000,34(2):107-117.
    [25]Chrost R J.Environmental control of the synthesis and activity of aquatic microbial ectoenzymes[A].In:Chrost RJ(ed).Microbial Enzymes in Aquatic Environments[M].New York:Springer Verlag,1991:29-59.
    [26]Sakami T,Yokoyama H,Ishihi Y.Microbial hydrolytic enzyme activity in the sediments of a net cage aquaculture area[J].Fisheries Science,2005,71(2):271-278.
    [27]Mallet C,Debroas D.Regulation ofβ-andα-glycolytic activities in the sediments of an eutrophic lake[J].Microb Ecol,2001,41:106-113.
    [28]Relexans J C.Measurement of the respiratory electron transport system(ETS)activity in marine sediments:state-ofthe-art and interpretation.Ⅱ.significance of ETS activity data[J].Marine Ecology Progress Series,1996,136(1/2/3):289-301.
    [29]Lomstein B A,Guldberg L B,Hansen J.Decomposition of Mytilus edulis:the effect on sediment nitrogen and carbon cycling[J].Journal of Experimental Marine Biology and Ecology,2006,329(2):251-264.
    [30]Belzile N,Pizarro J,Filella M,et al.Sediment diffusive fluxes of Fe,Mn,and P in a eutrophic lake:contribution from lateral vs bottom sediments[J].Aquatic Sciences,1996,58(4):327-354.
    [31]Gerke J,Hermann R.Adsorption of orthophosphate to humic-Fe-complexes and to amorphous Fe-oxide[J].Zeitschrift Fur Pflanzenernahrung Und Bodenkunde,1992,155(3):233-236.
    [32]Zhang Z J,Wang Z D,Wang Y W.Properties of phosphorus retention in sediments under different hydrological regimes:a laboratory-scale simulation study[J].Journal of Hydrology,2011,404(3/4):109-116.
    [33]李慧,曹秀云,宋春雷,等.巢湖及其入湖河流(南淝河)沉积物磷形态与吸附行为的垂直变化[J].长江流域资源与环境,2012,21(Z2):3-9.Li Hui,Cao Xiuyun,Song Chunlei,et al.Vertical variations in fractionations and sorption behaviors of phosphorus in sediments of Lake Chaohu and a river(Nanfei River)entering it[J].Resources and Environment in the Yangtze Basin,2012,21(Z2):3-9.
    [34]范成新,张路,包先明,等.太湖沉积物-水界面生源要素迁移机制及定量化-2.磷释放的热力学机制及源-汇转换[J].湖泊科学,2006,18(3):207-217.Fan Chengxin,Zhang Lu,Bao Xianming,et al.Migration mechanism of biogenic elements and their quantification on the sediment-water interface of Lake Taihu:Ⅱ.chemical thermodynamic mechanism of phosphorus release and its source-sink transition[J].Journal of Lake Science,2006,18(3):207-217.
    [35]Hill B H,Elonen C M,Jicha T M,et al.Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands[J].Freshwater Biology,2006,51(9):1670-1683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700