用户名: 密码: 验证码:
XFEM研究304不锈钢单边裂纹的高周疲劳扩展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:HCF propagation with unilateral initial crack in 304 stainless steel piece by XFEM
  • 作者:付远 ; 廖岩松 ; 陆德平 ; 刘觐 ; 陈志宝 ; 魏仕勇
  • 英文作者:FU Yuan;LIAO Yan-song;LU De-ping;LIU Jin;CHEN Zhi-bao;WEI Shi-yong;Applied Physics Institute,Jiangxi Academy of Sciences;College of Material Science and Engineering,Nanchang University;
  • 关键词:疲劳裂纹扩展 ; 扩展有限元 ; Paris准则 ; 304不锈钢 ; 应力强度因子
  • 英文关键词:fatigue crack propagation;;XFEM;;Paris criterion;;304 stainless steel;;stress intensity factor
  • 中文刊名:GANT
  • 英文刊名:Iron & Steel
  • 机构:江西省科学院应用物理研究所;南昌大学材料科学与工程学院;
  • 出版日期:2018-09-15
  • 出版单位:钢铁
  • 年:2018
  • 期:v.53
  • 基金:江西省科学院青年基金重点资助项目(2017-YZD2-10);; 江西省重点开发计划资助项目(20171BBE50043);; 江西省科学院重大科技专项资助项目(2017-YZD2-15);; 国家自然科学基金青年基金资助项目(51505203)
  • 语种:中文;
  • 页:GANT201809012
  • 页数:7
  • CN:09
  • ISSN:11-2118/TF
  • 分类号:69-74+92
摘要
为了研究金属微裂纹材料在较低的循环应力水平下的使用寿命,通过裂纹尖端奇异点的XFEM方法和Paris疲劳裂纹扩展理论研究了304不锈钢薄片样本的单边裂纹疲劳扩展行为,分别通过试验和数值模拟分析了高周疲劳应力循环下的裂纹扩展情况。结果表明,试验样本的总疲劳循环寿命约为1 180 000次。模拟的裂纹扩展速率与实际的试验扩展速率吻合度较好,通过XFEM计算出的裂纹增长数值解与应力强度函数确定的解析解在全区有较好的非线性拟合度,但是由于随着裂纹长度的不断增加,裂纹尖端应力强度因子的运算不稳定性增大,导致在III区中,数值解与解析解的?K值出现了非线性拟合度降低的趋势。
        In order to investigate the fatigue life of micro crack metal with low stress level cyclic loadings,an unilateral fatigue crack propagation of 304 stainless steel piece was researched with Paris criterion and extended finite element method(XFEM)based crack tip singularity. And the crack propagation with high cycle stress was analyzed by experiment and numerical method separately. Result shows that the whole cycle life of this sample is about 1.18 million times.The simulated values of propagation velocity are in good agreement with that of experimented values. The nonlinear fitting degree in whole areas between numerical solution by XFEM and analytical solution by stress intensity function(SIF)is very well. But the fitting degree of?Kvalue in III area is reduced for the reason of stress intensity factor in crack tip operational instability enlarged with the crack expanding.
引文
[1]付远,程香平,万珍珍,等.XFEM计算3D打印PLA材料拉伸试样的裂纹扩展[J].塑性工程学报,2016,23(2):54.(FU Yuan,CHENG Xiang-ping,WAN Zhen-zhen,et al.Crack propagation of PLA 3D printing strecting specimen and calculated by XFEM[J].Journal of Plasticity Engineering,2016,23(2):54.)
    [2]付远,程香平,万珍珍,等.DD432高温合金扭转弯曲高周疲劳特性[J].热加工工艺,2016,45(24):75.(FU Yuan,CHENG Xiang-ping,WAN Zhen-zhen,et al.Torsional bending HCF properties of DD432 superalloy[J].Hot Working Technology,2016,45(24):75.)
    [3]Dowling N E,Begley J.A.Fatigue crack growth during gross plasticity and the J-integral[C]//ASTM STP 590.Philadelphia:American Society for Testing and Materials,1976:82.
    [4]Lambert Y,Saillard P,Bathias C.Application of the J concept to fatigue crack growth in large-scale yielding[C]//ASTM STP969.Philadelphia:American Society for Testing and Materials,1988:318
    [5]Lamba H S.The J-integral applied to cyclic loading[J].Engineering Fracture Mechanics,1975(7):693.
    [6]Wüthrich C.The extension of the J-integral concept to fatigue cracks[J].International Journal of Fracture,1982(20):35.
    [7]Tanaka K.Mechanics and micromechanics of fatigue crack propagation[C]//ASTM STP 1020.Philadelphia:American Society for Testing and Materials,1989:151.
    [8]Forman R G,Keary V E,Engle R M.Numerical analysis of crack propagation in cyclic-loaded structures[J].Journal of Basic Engineering,1967(89):459.
    [9]Weertman J.Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed on a plane[J].International Journal of Fracture Mechanics,1966(2):460.
    [10]Klesnil M,Lukas P.Influence of strength and stress history on growth and stabilisation of fatigue cracks[J].Engineering Fracture Mechanics,1972(4):77.
    [11]Donahue R J,Clark H M,Atanmo P,et al.Crack opening displacement and the rate of fatigue crack growth[J].International Journal of Fracture Mechanics,1972(8):209.
    [12]Mcevily A J.On closure in fatigue crack growth[C]//ASTM STP 982.Philadelphia:American Society for Testing and Materials,1988:35.
    [13]Walker K.The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum[C]//ASTM STP 462.Philadelphia:American Society for Testing and Materials,1970:1
    [14]Forman R G,Mettu S R.Behavior of surface and corner cracks subjected to tensile and bending loads in Ti-6Al-4V alloy[C]//ASTM STP 1131.Philadelphia:American Society for Testing and Materials,1992:519
    [15]Sukumar N,Prévost J H.Modeling quasi-static crack growth with extended finite element method part I:Computer implementation[J].International Journal for Solids and Structures,2013(40):7513.
    [16]Sukumar N,Huang Z Y,Prévost J H,et al.Partition of unity enrichment for bimaterial interface cracks[J].International Journal for Numerical Methods in Engineering,2004(59):1075.
    [17]Elguedj T,Gravouil A,Combescure A.Appropriate extended functions for X-FEM simulation of plastic fracture mechanics[J].Computer Methods in Applied Mechanics and Engineering,2006(195):501.
    [18]Erdogan F,Sih G C.On the crack extension in plates under plane loading and transverse shear[J].ASME Journal of Basic Engineering,1963(85):519.
    [19]中国航空研究院.应力强度因子手册[M].北京:科学出版社,1981.(Chinese Aeronautical Establishment.Manual of Stress Intensity Factor[M].Beijing:Science Press,1981.)
    [20]冯刚,宫大为,张朝阁,等.316L不锈钢的疲劳裂纹扩展行为试验[J].钢铁,2014,6(49):74.(FENG Gang,GONG Da-wei,ZHANG Chao-ge,et al.Experiment of fatigue crack growth behavior of 316L stainless steel[J].Iron and steel,2014,6(49):74.)
    [21]张志军,何柏林,李力.钢的超高周疲劳性能及其影响因素研究进展[J].钢铁,2016,10(51):62.(ZHANG Zhi-jun,HE Bolin,LI Li.Research progress on ultra-long-life fatigue properties of steel and its influencing factors[J].Iron and steel,2016,10(51):62.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700