用户名: 密码: 验证码:
全金属支杆阵列多稳态被动转换及滞后阻尼特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High stiffness and high hysteresis damping of metal column array in mutli-stable potentials
  • 作者:季树彬 ; 王树青 ; 方辉
  • 英文作者:JI ShuBin;WANG ShuQing;FANG Hui;Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China;
  • 关键词:多稳态 ; 高刚度 ; 阻尼 ; 减振
  • 英文关键词:multi-stable;;high stiffness;;damping;;vibration isolation
  • 中文刊名:JEXK
  • 英文刊名:Scientia Sinica(Technologica)
  • 机构:中国海洋大学山东省海洋工程重点实验室;
  • 出版日期:2019-01-20
  • 出版单位:中国科学:技术科学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(批准号:51625902,11572300);; 山东省泰山学者计划(编号:TS201511016);; 山东省科技重点研发计划(编号:2017GHY15120);; 工信部《第七代超深水钻井平台(船)》创新专项资助项目
  • 语种:中文;
  • 页:JEXK201901010
  • 页数:12
  • CN:01
  • ISSN:11-5844/TH
  • 分类号:101-112
摘要
海洋结构趋向于更大型化,需以高刚度承担更大负荷,结构就不能很好地适应动态负载,动载低衰减传播将导致设备损坏和人员不适,但传统黏性阻尼减振结构的刚度较低,可能降低静态负载.为使减振结构同时具有高承载和高阻尼性能,本文基于稳定理论设计了多稳态被动转换支杆阵列,位移加载下压杆出现直杆-局部弯曲-整体弯曲3个稳定支撑状态,由此产生负刚度使激励-响应曲线形成滞后回环;进一步提出了线性弹簧-多稳态压杆并联结构,位移或力动态加载下该类结构都可发生多稳态转换,实现静态高刚度和动态高耗散,并以有限元模拟讨论了耗散特性的几何参数相关性.
        Larger marine structures are being developed for deep-sea engineering. The structure with high stiffness is necessary in the designing,in which the dynamic responds propagate with low dissipation then bring detrimental effects on the equipment and staffs. However,most damping materials occupy the low stiffness and disadvantageous to load bearing. An eccentric column array with mutli-stable potentials is presented as an economical passive alternative for obtaining flag-shaped hysteretic damping combined with high stiffness. Negative incremental structural stiffness occurs when columns with capped ends are subjected to elastic buckling mode jump. Moreover, a system integration of mutli-stable and linear(positive stiffness) springs exhibits same properties compared to an individual mutli-stable element when force is controlled and loaded on the system. Then, stable axial dampers with initial modulus similar to that of the parent material and with enhanced damping were designed built and tested theoretically and numerically.
引文
1海洋工程装备制造业中长期发展规划.工信部联规[2011]597号
    2 Gardonio P, Elliott S J, Pinnington R J. Active isolation of structural vibration on a multiple-degree-of-freedom system, part I:The dynamics of the system. J Sound Vib, 1997, 207:61–93
    3 Suh C H, Smith C G. Dynamic simulation of engine-mount systems. In:Proceedings of the 1997 Noise and Vibration Conference. 1997
    4 Lakes R S. Viscoelastic Materials. Cambridge:Cambridge University Press, 2009
    5 Carrella A, Brennan M J, Waters T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J Sound Vib, 2007,301 :678–689
    6 Virgin L N, Santillan S T, Plaut R H. Vibration isolation using extreme geometric nonlinearity. J Sound Vib, 2008, 315:721–731
    7 Le T D, Ahn K K. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J Sound Vib,2011, 330:6311–6335
    8 Hu N, Burgue?o R. Buckling-induced smart applications:Recent advances and trends. Smart Mater Struct, 2015, 24:063001
    9 Masana R, Daqaq M F. Relative performance of a vibratory energy harvester in mono-and bi-stable potentials. J Sound Vib, 2011, 330:6036–6052
    10 Kidambi N, Harne R L, Wang K W. Adaptation of energy dissipation in a mechanical metastable module excited near resonance. J Vib Acoust,2016, 138:011001
    11 Dong L, Lakes R. Advanced damper with high stiffness and high hysteresis damping based on negative structural stiffness. Int J Solids Struct,2013, 50:2416–2423
    12 Kalathur H, Hoang T M, Lakes R S, et al. Buckling mode jump at very close load values in unattached flat-end columns:Theory and experiment.J Appl Mech, 2014, 81:041010
    13 Zhou X H. Stability Theory of Structure. Beijing:China Higher Education Press, 2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700