用户名: 密码: 验证码:
LED光谱对舌齿鲈幼鱼摄食、生长和能量分配的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of LED spectrum on feeding, growth and energy distribution of juvenile Dicentrarchus labrax
  • 作者:任纪龙 ; 魏平平 ; 费凡 ; 代明允 ; 马贺 ; 高东奎 ; 宋昌斌 ; 陈涛 ; 刘鹰
  • 英文作者:REN Jilong;WEI Pingping;FEI Fan;DAI Mingyun;MA He;GAO Dongkui;SONG Changbin;CHEN Tao;LIU Ying;School of Marine Science and Environment Engineering, Dalian Ocean University;Liaoning Aquaculture Facilities and Equipment Engineering Research Center;Institute of Semiconductors, China Academy of Sciences;LED Cooler Technology Co., Ltd.;Qingdao National Laboratory for Marine Science and Technology;
  • 关键词:舌齿鲈 ; LED光谱 ; 生长 ; 摄食 ; 能量分配 ; DNA/RNA
  • 英文关键词:Dicentrarchus labrax;;LED light spectrum;;growth;;feeding;;energy distribution;;DNA/RNA
  • 中文刊名:SCKX
  • 英文刊名:Journal of Fisheries of China
  • 机构:辽宁省水产设施养殖与装备工程研究中心;大连海洋大学海洋科技与环境学院;中国科学院半导体研究所;深圳市超频三科技股份有限公司;青岛海洋科学与技术国家实验室;
  • 出版日期:2019-05-15 08:38
  • 出版单位:水产学报
  • 年:2019
  • 期:v.43
  • 基金:国家重点研发计划(2017YFB0404000)~~
  • 语种:中文;
  • 页:SCKX201908013
  • 页数:9
  • CN:08
  • ISSN:31-1283/S
  • 分类号:133-141
摘要
在海水循环水养殖系统中,分别设置白光(λ_(400~780 nm))、红光(λ_(630 nm))、黄光(λ_(595 nm))、绿光(λ_(530 nm))、蓝光(λ_(455 nm))5组不同LED光谱处理组,研究5种不同LED光谱对舌齿鲈幼鱼[(29.91±0.39) g、(13.78±0.35) cm)]摄食、生长和能量分配的影响。结果显示,不同LED光谱对舌齿鲈幼鱼摄食、生长和能量分配具有显著性影响。红光谱下舌齿鲈幼鱼生长较好(41.09±5.70) g,蓝光谱下舌齿鲈幼鱼生长较差(36.02±4.18) g;蓝光谱下舌齿鲈幼鱼DGC(daily growth coefficient)显著低于其他各组,其他各组之间差异不显著;5组LED光谱处理组舌齿鲈幼鱼摄食率存在显著性差异,其中红光谱摄食率最高。类胰岛素生长因子IGF-1和IGF-2测定结果表明,白光谱下IGF-1的mRNA表达量最高;黄光谱下IGF-2的mRNA表达量最高。能量分配方面,红光谱下舌齿鲈幼鱼排粪能和代谢能较低,摄食能和生长能较高;蓝光谱下舌齿鲈幼鱼排粪能较高,摄食能和代谢能较低,生长能最低。对舌齿鲈幼鱼肌肉和肝脏RNA/DNA比值测定结果表明,蓝光谱下,舌齿鲈幼鱼肝脏RNA/DNA比值显著高于其他各组;蓝光谱和白光谱下舌齿鲈幼鱼肌肉中RNA/DNA比值存在显著性差异,其他各组之间不具有显著性差异。研究表明,红光谱下舌齿鲈幼鱼摄食、生长均表现较好,且红光谱下舌齿鲈幼鱼具有较高的摄食能和生长能;蓝光谱下舌齿鲈幼鱼摄食、生长表现较差,排粪能较高,生长能较低。因此,红光谱对舌齿鲈幼鱼摄食、生长具有积极影响;蓝光谱对舌齿鲈幼鱼摄食、生长具有不利影响。
        Dicentrarchus labrax is an important economic fish in aquaculture in China. In the process of industrialized recirculating aquaculture, different spectral environments have important implications for the effects of feeding and growth. In this study, five different LED spectral processing groups of white light(λ_(400-780 nm)), red light(λ_(630 nm)), yellow light(λ_(595 nm)), green light(λ_(530 nm)) and blue light(λ_(455 nm)) were set in the seawater circulating aquaculture experimental system. The effects of five different LED spectra on feeding, growth and energy distribution of juveniles [(29.91±0.39) g,(13.78±0.35 cm)) were studied. The results showed that the effects of different LED spectra on the feeding, growth and energy distribution of juveniles were significantly different. The red light group had the best growth of the juveniles(41.09±5.70) g, and the blue group had the poorest growth of the juveniles(36.02±4.18) g; the DGC(daily growth coefficient) of the blue group was significantly lower than the other groups, and the difference between the other groups was not significant; there were significant differences in the feeding rate of the three groups of LED spectrum treatment groups, and the red light group had the highest feeding rate. The results of insulin-like growth factor IGF-1 and IGF-2 showed that the expression of IGF-1 mRNA was highest in the white light group; the mRNA expression level of IGF-2 was highest in the yellow light group. In terms of energy distribution, the red light group has lower fecal energy and metabolizable energy, and has the highest feeding energy and growth energy; the blue light group has the highest fecal energy, lower feeding energy and metabolic energy, and the lowest growth energy. The ratio of RNA/DNA in the muscle and liver of juvenile fish showed that the RNA/DNA ratio of the liver in the blue light group was significantly higher than that in the other groups; the RNA/DNA ratio in the muscles of the blue light group and the white light group displayed significant difference and no significant differences existed among the other groups. The results showed that the red light Eurasian larvae had better feeding and growth performance, and the blue-spectrum larvae had poor feeding and growth performance, and the red-spectrum larvae had higher feeding energy and growth energy.Therefore, the red spectrum has a better promoting effect on the growth of juveniles, and the blue spectrum has an adverse effect on the feeding growth of juveniles. This study provides a reference for the ground-based industrialized recirculating aquaculture of the D. labrax, creating a suitable spectral environment for growth.
引文
[1]Villamizar N,Blanco-Vives B,Migaud H,et al.Effects of light during early larval development of some aquacultured teleosts:a review[J].Aquaculture,2011,315(1-2):86-94.
    [2]周显青,牛翠娟,李庆芬.光照对水生动物摄食、生长和存活的影响[J].水生生物学报,2000,24(2):178-181.Zhou X Q,Niu C J,Li Q F.Effects of light on feeding behavior,growth and survival of aquatic animals[J].Acta Hydrobiologica Sinica,2000,24(2):178-181(in Chinese).
    [3]Boeuf G,Le Bail P Y.Does light have an influence on fish growth?[J].Aquaculture,1999,177(1-4):129-152.
    [4]陈婉情,刘志明,吴亮,等.光色对豹纹鳃棘鲈(Plectropomus leopardus)幼鱼生长及血液生化指标的影响[J].生态学杂志,2016,35(7):1889-1895.Chen W Q,Liu Z M,Wu L,et al.The influences of light color on growth,haematological and biochemical indices of juvenile Plectropomus leopardus[J].Chinese Journal of Ecology,2016,35(7):1889-1895(in Chinese).
    [5]吴亮,吴洪喜,马建忠,等.光色对豹纹鳃棘鲈幼鱼摄食、生长和存活的影响[J].海洋科学,2016,40(11):44-51.Wu L,Wu H X,Ma J Z,et al.Effect of light color on feeding,growth,and survival of Plectropomus leopardus juveniles[J].Marine Sciences,2016,40(11):44-51 (in Chinese).
    [6]Downing G,Litvak M K.Effects of light intensity,spectral composition and photoperiod on development and hatching of haddock(Melanogrammus aeglefinus)embryos[J].Aquaculture,2002,213(1-4):265-278.
    [7]Villamizar N,García-Alcazar A,Sánchez-Vázquez F J.Effect of light spectrum and photoperiod on the growth,development and survival of European sea bass(Dicentrarchus labrax)larvae[J].Aquaculture,2009,292(1-2):80-86.
    [8]Karakatsouli N,Papoutsoglou E S,Sotiropoulos N,et al.Effects of light spectrum,rearing density and light intensity on growth performance of scaled and mirror common carp Cyprinus carpio reared under recirculating system conditions[J].Aquacultural Engineering,2010,42(3):121-127.
    [9]陈明卫,高维玉,姜玉声,等.光色对中华绒螯蟹幼体诱集与仔蟹摄食的影响[J].大连海洋大学学报,2016,31(4):362-367.Chen M W,Gao W Y,Jiang Y S,et al.Effects of color light on aggregation of larvae and food intake in juvenile Chinese mitten hand crab Eriocheir sinensis[J].Journal of Dalian Fisheries University,2016,31(4):362-367(in Chinese).
    [10]马本贺,孙志宾,马爱军,等.环境光色对白条双锯鱼(Amphiprion frenatus)幼鱼生长和体色的影响[J].海洋与湖沼,2017,48(1):148-154.Ma B H,Sun Z B,Ma A J,et al.Effect of light color on growth and body color in tomato clownfish Amphiprion frenatus juvenile[J].Oceanologia et Limnologia Sinica,2017,48(1):148-154(in Chinese).
    [11]赵宁宁,周邦维,李勇,等.环境光色对工业化养殖豹纹鳃棘鲈幼鱼生长、肤色及生理指标的影响[J].中国水产科学,2016,23(4):976-984.Zhao N N,Zhou B W,Li Y,et al.Effects of light color on growth,skin color,and physiological indices of juvenile Plectropomus leopardus in a recirculating aquaculture system[J].Journal of Fishery Sciences of China,2016,23(4):976-984(in Chinese).
    [12]Karakatsouli N,Papoutsoglou S E,Panopoulos G,et al.Effects of light spectrum on growth and stress response of rainbow trout Oncorhynchus mykiss reared under recirculating system conditions[J].Aquacultural Engineering,2008,38(1):36-42.
    [13]Stefansson S O,Hansen T J.The effect of spectral composition on growth and smolting in Atlantic salmon(Salmo salar)and subsequent growth in sea cages[J].Aquaculture,1989,82(1-4):155-162.
    [14]张磊,郑纪盟,夏苏东,等.盐度和温度对欧洲舌齿鲈(Dicentrarchus labrax)幼鱼活动与存活的影响[J].安徽农业科学,2014,42(34):12121-12122.Zhang L,Zheng J M,Xia S D,et al.Effects of temperature and salinity on the activities and survival of Dicentrarchus labrax[J].Journal of Anhui Agricultural Sciences,2014,42(34):12121-12122(in Chinese).
    [15]Sakata Y,Muto A,Uddin M A,et al.Influence of temperature,oxygen and salinity on the metabolism of the European sea bass[J].Journal of Sea Research,1999,42(2):157-168.
    [16]Marchesan M,Spoto M,Verginella L,et al.Behavioural effects of artificial light on fish species of commercial interest[J].Fisheries Research,2005,73(1-2):171-185.
    [17]国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准食品中蛋白质的测定:GB5009.5-2016[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of PRC,China Food and Drug Administration.National food safety standard determination of protein in foods:GB 5009.5-2016[S].Beijing:China Standard Press,2017(in Chinese).
    [18]中华人民共和国国家卫生和计划生育委员会.食品安全国家标准食品中灰分的测定:GB 5009.4-2016[S].北京:中国标准出版社,2017.National Health and Family Planning Commission of PRC.National food safety standard determination of ash in foods:GB 5009.4-2016[S].Beijing:China Standard Press,2017(in Chinese).
    [19]崔奕波.鱼类生物能量学的理论与方法[J].水生生物学报,1989,13(4):369-383.Cui Y B.Bioenergetics of fishes:theory and methods[J].Acta Hydrobiologica Sinica,1989,13(4):369-383(in Chinese).
    [20]唐启升,孙耀,张波.7种海洋鱼类的生物能量学模式[J].水产学报,2003,27(5):443-449.Tang Q S,Sun Y,Zhang B.Bioenergetics models for seven species of marine fish[J].Journal of Fisheries of China,2003,27(5):443-449(in Chinese).
    [21]Heydarnejad M S,Parto M,Pilevarian A A.Influence of light colours on growth and stress response of rainbow trout(Oncorhynchus mykiss)under laboratory conditions[J].Journal of Animal Physiology and Animal Nutrition,2013,97(1):67-71.
    [22]Terova G,Rimoldi S,Chini V,et al.Cloning and expression analysis of insulin-like growth factor I andⅡin liver and muscle of sea bass(Dicentrarchus labrax,L.)during long-term fasting and refeeding[J].Journal of Fish Biology,2007,70(SB):219-233.
    [23]Kim B H,Hur S P,Hur S W,et al.Relevance of light spectra to growth of the rearing tiger puffer Takifugu rubripes[J].Development&Reproduction,2016,20(1):23-29.
    [24]Gao X L,Zhang M,Li X,et al.Effects of LED light quality on the growth,metabolism,and energy budgets of Haliotis discus discus[J].Aquaculture,2016,453:31-39.
    [25]隋佳佳.光色对刺参(Apostichopus japonicus)行为、生长以及不同规格刺参代谢的影响[D].青岛:中国海洋大学,2008.Sui J J.Effects of light color on the behavior,growth and metabolizability in different specifications of sea cucumber,Apostichopus japonicus[D].Qingdao:Ocean University of China,2008(in Chinese).
    [26]Buckley L J.Changes in ribonucleic acid,deoxyribonucleic acid,and protein content during ontogenesis in winter flounder,Pseudopleuronectes americanus,and effect of starvation[J].Fishery Bulletin,1980,77(3):703-708.
    [27]Gwak W S,Tanaka M.Developmental change in RNA:DNA ratios of fed and starved laboratory‐reared Japanese flounder larvae and juveniles,and its application to assessment of nutritional condition for wild fish[J].Journal of Fish Biology,2001,59(4):902-915.
    [28]Imsland A K,Foss A,Bonga S W,et al.Comparison of growth and RNA:DNA ratios in three populations of juvenile turbot reared at two salinities[J].Journal of Fish Biology,2002,60(2):288-300.
    [29]黄国强,李洁,唐夏,等.光照周期对褐牙鲆幼鱼生长、能量分配及生化指标的影响[J].水产学报,2014,38(1):109-118.Huang G Q,Li J,Tang X,et al.Effects of photoperiod on the growth,energy allocation,and biochemical parameters in juvenile brown flounder(Paralichthys olivaceus)[J].Journal of Fisheries of China,2014,38(1):109 -118(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700