用户名: 密码: 验证码:
核壳结构Fe_3O_4@SiO_2纳米粒子的制备及表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and characterization of core-shell structure Fe_3O_4@SiO_2 nanoparticles
  • 作者:廖鹏 ; 李娜 ; 刘家良 ; 李崇瑛
  • 英文作者:LIAO Peng;LI Na;LIU Jialiang;LI Chongying;College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology;College of Energy Resources, Chengdu University of Technology;
  • 关键词:磁性 ; 纳米粒子 ; 二氧化硅 ; Stber法
  • 英文关键词:magnetism;;nanoparticles;;silicon dioxide;;Stber method
  • 中文刊名:CDLG
  • 英文刊名:Journal of Chengdu University of Technology(Science & Technology Edition)
  • 机构:成都理工大学材料与化学化工学院;成都理工大学能源学院;
  • 出版日期:2019-01-21 07:01
  • 出版单位:成都理工大学学报(自然科学版)
  • 年:2019
  • 期:v.46;No.212
  • 基金:国家自然科学基金项目(41573014);国家自然科学基金青年基金项目(41502139)
  • 语种:中文;
  • 页:CDLG201901012
  • 页数:5
  • CN:01
  • ISSN:51-1634/N
  • 分类号:120-124
摘要
为丰富Fe_3O_4磁性纳米粒子在生物医学领域的应用,通过共沉淀法制备Fe_3O_4纳米粒子,经柠檬酸三钠修饰后,采用改进的Stber法成功在Fe_3O_4纳米粒子表面包覆上SiO_2,制备出核壳结构Fe_3O_4@SiO_2纳米粒子。使用扫描式电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、振动样品磁强计对制备的Fe_3O_4@SiO_2纳米粒子进行表征。结果表明:制备的Fe_3O_4@SiO_2纳米粒子较Fe_3O_4纳米粒子分散性有明显的提高,平均粒径在65 nm左右,饱和比磁化强度为10.26 A·m~2/kg,仍具有良好的超顺磁性。
        In the paper, emphasis is put on the synthesis and characterization of Fe_3O_4@SiO_2 core/shell structured nanoparticles. Superparamagnetic Fe_3O_4 nanoparticles are prepared by co-precipitation method and then, silica is coated on the surface of the magnetite nanoparticles by modified Stber method. Subsequently, the nanocomposite samples are characterized by scanning electron microscope, fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. The results reveal that the Fe_3O_4 and Fe_3O_4@SiO_2 nanoparticles have an average size of 15 nm and 65 nm diameters, respectively. Moreover, the nanocomposites are monodisperse and uniformly spherical with well-defined shell-core structures and exhibit superparamagnetic characteristics. Meanwhile, spinel structure for the magnetite particles coated by silica is revealed by powder X-ray diffraction measurements.
引文
[1] Cong-Wang Z. Preparation and characterization of surface functionalization of silica-coated magnetite nanoparticles for drug delivery[J]. Nano, 2014, 9(4): 1-8.
    [2] Chifiriuc C M, Dan E M, Saviuc C, et al. Biocompatible magnetic hollow silica microspheres for drug delivery[J]. Current Organic Chemistry, 2013, 17(10): 1029-1033.
    [3] Lia S, Yu-Ho W, Mallikarjunarao G, et al. Magnetic particle — Based hybrid platforms for bioanalytical sensors[J]. Sensors, 2009, 9(4): 2976-2999.
    [4] Tamer U, Gündogdu Y, Ismail Hakki Boyaci, et al. Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection[J]. Journal of Nanoparticle Research, 2010, 12(4): 1187-1196.
    [5] Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials, 2005, 26(18): 3995-4021.
    [6] Atta A M, El-Mahdy G A, Al-Lohedan H A, et al. Preparation and application of cross linked poly (sodium acrylate)-coated magnetite nanoparticles as corrosion inhibitors for carbon steel alloy[J]. Molecules, 2015, 20(1): 1244-1261.
    [7] Wang Y, Zhang M, Wang L, et al. Synthesis of hierarchical nickel anchored on Fe3O4@SiO2 and its successful utilization to remove the abundant proteins (BHb) in bovine blood[J]. New Journal of Chemistry, 2015, 39(6): 4876-4881.
    [8] Liu H L, Wu J H, Min J H, et al. One-pot synthesis and characterization of bifunctional Au-Fe3O4, hybrid core-shell nanoparticles[J]. Journal of Alloys & Compounds, 2012, 537(26): 60-64.
    [9] Qu H O, Tong S, Song K J, et al. Controllable in-situ synthesis of magnetite coated silica-core water-dispersible hybrid nanomaterials[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2013, 29(33): 10573-10578.
    [10] Lu Y, Yin Y, Mayers B T, et al. Modifying the surface properties of super paramagnetic iron oxide nanoparticles through A Sol-Gel Approach[J]. Nano Letters, 2002, 2(3): 183-186.
    [11] St?ber W, Fink A, Ernst Bohn. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid & Interface Science, 1968, 26(1): 62-69.
    [12] Narita A, Naka K, Chujo Y. Facile control of silica shell layer thickness on hydrophilic iron oxide nanoparticles via reverse micelle method[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2009, 336(1): 46-56.
    [13] Philipse A P, Bruggen M P B V, Pathmamanoharan C. Magnetic silica dispersions: Preparation and stability of surface-modified silica particles with a magnetic core[J]. Langmuir, 1994, 10(1): 92-99.
    [14] Guo S, Li D L, Li J, et al. Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery[J]. Biomaterials, 2009, 30(10): 1881-1889.
    [15] Yudhisthira Sahoo, Alireza Goodarzi, Swihart M T, et al. Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control[J]. Journal of Physical Chemistry B, 2005, 109(9): 3879-3885.
    [16] Wang L, Luo J, Maye M M, et al. Iron oxide-gold core-shell nanoparticles and thin film assembly[J]. Journal of Materials Chemistry, 2005, 15(18): 1821-1832.
    [17] Wang L, Bao J, Lun W P, et al. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres[J]. Chemistry-A European Journal, 2006, 12(24): 6341-6347.
    [18] 王鹏程,柳松,刘梦溪.单分散纳米二氧化硅的制备与分散性研究[J].无机盐工业,2011,43(2):40-43.Wang P C, Liu S, Liu M X. Study on preparation and dispersivity of monodisperse silica nanoparticles[J]. Inorganic Chemicals Industry, 2011, 43(2): 40-43. (in Chinese)
    [19] Chang Q, Zhu L, Yu C, et al. Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2, nanoparticles[J]. Journal of Luminescence, 2008, 128(12): 1890-1895.
    [20] Liu H M, Wu S H, Lu C W, et al. Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells[J]. Small, 2008, 4(5): 619-626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700