用户名: 密码: 验证码:
基于测井曲线频谱分析柴达木盆地西部七个泉地区上、下油砂山组米兰科维奇旋回特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Milankovitch Cycles of Shangyoushashan and Xiayoushashan Formations in Qigequan Area,Western Qaidam Basin Based on the Spectral Analysis of the Logging Curve
  • 作者:李堃宇 ; 伊海生 ; 夏国清
  • 英文作者:Li Kunyu;Yi Haisheng;Xia Guoqing;Institute of Sedimentary Geology,Chengdu University of Technology;State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation,Chengdu University of Technology;
  • 关键词:自然伽马 ; 米兰科维奇旋回 ; 频谱分析 ; 沉积速率 ; 柴达木盆地
  • 英文关键词:natural gamma;;Milankovitch cycle;;spectral analysis;;deposition rate;;Qaidam Basin
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:成都理工大学沉积地质研究院;成都理工大学油气藏地质及开发工程国家重点实验室;
  • 出版日期:2018-05-15
  • 出版单位:地质科技情报
  • 年:2018
  • 期:v.37;No.180
  • 基金:国家自然科学基金项目(41402099)
  • 语种:中文;
  • 页:DZKQ201803012
  • 页数:5
  • CN:03
  • ISSN:42-1240/P
  • 分类号:93-97
摘要
七个泉地区位于柴达木盆地西北缘,由于毗邻阿尔金断裂带等原因,地层较为复杂,高精度的沉积旋回研究较薄弱且鲜有讨论。对柴达木盆地西部七深2井自然伽马测井数据进行了频谱分析及滤波分析,分析结果表明中高频旋回厚度比值与天文轨道周期比值具有良好的对应性,在论证了沉积速率之后,表明柴西七个泉地区上、下油砂山组地层中较好地保存了米兰科维奇旋回。其中上油砂山组短偏心率,轴斜率长周期、短周期,岁差长周期、短周期所控制的沉积旋回厚度分别为11.38,5.92,5.10,2.35,2.11m;下油砂山组短偏心率,轴斜率长周期、短周期,岁差长周期、短周期所控制的沉积旋回厚度分别为8.17,4.45,3.27,1.85,1.51m。
        The Qigequan area is located in the northwestern margin of the Qaidam Basin.Due to its close proximity to the Altyn Tagh fault,the strata are more complex and highly precise sedimentary cycles are relatively weak,which is rarely discussed.The spectral analysis and filtering analysis of natural gamma ray logging data of Well Qinshen 2 in western Qaidam Basin show that there is a good correspondence between the ratio of high-frequency gyration thickness and the ratio of astronomical orbit weeks.After the deposition rate is demonstrated,the Milankovitch cycle is proved to be well conserved in the strata of Shangyoushashan and Xiayoushashan formations in Qigequan area of Chaixi.The thickness of sedimentary cycles,controlled by short eccentricity,long axial slope period,short axial slope period,long precession period and short precession period,are 11.38,5.92,5.10,2.35 mand 2.11 m,respectively.While the thickness of sedimentary cycles,controlled by short eccentricity,long axial slope period,short axial slope period,long precession period and short precession period,are 8.17,4.45,3.27,1.85 mand 1.51 mrespectively.
引文
[1]陈世悦,徐凤银,彭德华.柴达木盆地基底构造特征及其控制意义[J].新疆石油地质,2000,21(3):175-179.
    [2]党玉琪,熊继辉,刘震,等.柴达木盆地油气成藏的主控因素[J].石油与天然气地质,2004,25(6):614-619.
    [3]付锁堂,马达德,汪立群,等.柴达木盆地昆北冲断带古隆起油藏特征及油气成藏条件[J].石油学报,2013,34(4):675-682.
    [4]程日辉,王国栋,王璞珺.松辽盆地白垩系泉三段-嫩二段沉积旋回与米兰科维奇周期[J].地质学报,2008,82(1):55-64.
    [5]Berger A.Milankovitch theory and climate[R].Rev.Geophys.,1988,26(4):624-657.
    [6]王永军,郭泽清,刘卫红,等.柴达木盆地东部三湖地区第四系米兰科维奇旋回分析[J].地球物理学进展,2007,22(2):544-551.
    [7]Weedon G P.Time-series analysis and cyclostratigraphy[M].Cambridge:Cambridge University Press,2003:1-259.
    [8]Ma W T,Tian J,Li Q Y.Astronimically modulated Late Pliocene equatorial Pacific climate transition and Northern Hemisphere ice sheet expansion[J].Chinese Science Bulletin,2010,55(2):212-220.
    [9]Hays J D,Imbrie J,Shackleton N J.Variations in the Earth’s Orbit:Pacemaker of the ice ages[J].Science,1976,194:1121-1132.
    [10]赵汉卿,刘招君,姚树青,等.基于测井曲线的小波变换定量层序地层单元划分[J].世界地质,2013,32(2):372-378.
    [11]王志坤,钟建华,王多云,等.柴达木三湖地区七个泉组高频旋回成因分析[J].中国石油大学学报:自然科学版,2008,32(2):1-5.
    [12]伊海生.沉积旋回叠置形式的波形分析及旋回层序划分方法[J].沉积学报,2015,33(5):855-864.
    [13]荣建锋.柴达木盆地西部干柴沟地区上、下油砂山组高频沉积旋回及成因机制研究[D].成都:成都理工大学,2009.
    [14]陈茂山.测井资料的两种深度域频谱分析方法及在层序地层学研究中的应用[J].石油地球物理勘探,1999,34(1):57-64.
    [15]郑兴平,周进高,吴兴宁.碳酸盐岩高频层序定量分析技术及其应用[J].中国石油勘探,2004,27(1):26-30.
    [16]李斌,孟自芳,李相博,等.靖安油田延长组米兰科维奇沉积旋回分析[J].地质科技情报,2005,24(2):64-70.
    [17]伊海生.测井曲线旋回分析在碳酸盐岩层序地层研究中的应用[J].古地理学报,2011,13(4):456-466.
    [18]杨平.柴达木盆地西部七个泉-红柳泉地区第三系层序生物地层学研究[D].北京:中国地质大学(北京),2007.
    [19]李凤杰,王多云,程微.应用自然伽马曲线反演陇东地区延安组沉积旋回[J].成都理工大学学报:自然科学版,2004,31(5):473-477.
    [20]尹青,伊海生,夏国清,等.基于测井曲线频谱分析在伦坡拉盆地古近系米氏旋回层序及可容空间变化趋势中的研究[J].地球物理学进展,2015,30(3):1288-1297.
    [21]Boulila S,Galbrun B,Miller K G,et al.On the origin of Cenozoic and Mesozoic“third-order”eustatic sequences[J].EarthScience Reviews,2011,109:94-112.
    [22]Hammer,Harper D A T,Ryan P D.Past:Paleontological statistics software package for education and data analysis[J].Palaeontologia Electronica,2001,4(1):1-9.
    [23]Hammer,Harper D A T.Paleontological data analysis[M].[S.l.]:Wiley-Blackwell,2008.
    [24]夏国清,伊海生,黄华谷,等.藏北雁石坪地区夏里组米级沉积旋回及成因[J].成都理工大学学报:自然科学版,2010,37(2):133-139.
    [25]Olsen P E.A 40-million-year lake record of early Mesozoic orbit climatic forcing[J].Science,1986,234:842-848.
    [26]吴婵,阎存凤,李海兵,等.柴达木盆地西部新生代构造演化及其对青藏高原北部生长过程的制约[J].岩石学报,2013,29(6):2211-2222.
    [27]Lu H J,Xiong S F.Magne to stratigraphy of the Dahonggou section,noethern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan Altyn Tagh Fault[J].Earth and Planetary Science Letters,2009,288:539-550.
    [28]孙知明,杨振宇,葛肖虹,等.柴达木盆地西北缘古近系磁性年代研究进展[J].地质通报,2004,23(9):899-902.
    [29]刘栋梁,方小敏,王亚东,等.平衡剖面方法恢复柴达木盆地新生代地层缩短及其意义[J].地质科学,2008,43(4):637-647.
    [30]张伟林.柴达木盆地新生代高精度磁性地层与青藏高原隆升[D].兰州:兰州大学,2006.
    [31]韦一,张克信,季军良,等.青藏高原柴达木盆地新生代沉积充填速率演化及其对构造隆升的响应[J].地质通报,2013,32(1):105-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700