用户名: 密码: 验证码:
重庆市极端温度对心血管病死亡影响的时间规律分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Time-Regular Pattern Analysis on Effect of Extreme Temperature to the Death of Cerebrovascular and Cardiovascular Diseases in Chongqing
  • 作者:李永红 ; 罗书全 ; 和晋渝 ; 程义斌 ; 姚孝元 ; 孙波 ; 王艳 ; 金银龙
  • 英文作者:LI Yonghong;LUO Shuquan;HE Jinyu;CHENG Yibin;YAO Xiaoyuan;SUN Bo;WANG Yan;JIN Yinlong;
  • 关键词:血管病 ; 缺血性心脏病 ; 气候变化 ; 极端温度 ; 滞后效应
  • 英文关键词:cerebrovascular disease;;cardiovascular diseases;;climate change;;extreme temperature;;lag effect
  • 中文刊名:GWYX
  • 英文刊名:Journal of Environmental Hygiene
  • 机构:中国疾病预防控制中心环境与健康相关产品安全所;重庆市疾病预防控制中心;
  • 出版日期:2018-12-25
  • 出版单位:环境卫生学杂志
  • 年:2018
  • 期:v.8
  • 基金:国家科技基础资源调查专项(2017YF101201);; 国家重点基础研究发展计划(973计划)(2012CB955502);; GEF/UNDP/WHO气候变化专项基金项目(PIMS3248)
  • 语种:中文;
  • 页:GWYX201806001
  • 页数:6
  • CN:06
  • ISSN:11-6000/R
  • 分类号:5-10
摘要
目的探讨"火炉城市"重庆市极端温度与心血管疾病死亡之间的关系及其时间规律。方法收集重庆市2011—2013年心血管疾病死亡数据及气象、环保等数据,控制空气污染、时间长期和短期趋势等混杂因素,采用分布滞后非线性模型(DLNM)分析极端温度对心血管疾病死亡影响的滞后效应和累积效应。结果对于血管病死亡,高温的影响在当天最大(RR=1.66, 95%CI:1.19~2.33)、持续2 d;低温的影响滞后4 d、持续12 d,最大RR值出现在第6天(lag 6)为1.22(95%CI:1.06~1.41)。对于缺血性心脏病死亡,高温的影响在当天最大(RR=1.88,95%CI:1.12~3.15)、持续7 d;低温的影响滞后1 d、持续27 d,其最大RR值出现在第2天(lag 2)为2.05(95%CI:1.32~3.20)。极端高温(34℃)对血管病和缺血性心脏病死亡的累积风险分别为2.08 (95%CI:1.49~2.90)和2.63 (95%CI:1.27~5.42),极端低温(2℃)对两者的累积效应分别为4.61 (95%CI:1.85~11.5)和120 (95%CI:3.72~463)。结论极端高温和低温对两种疾病死亡的滞后效应不同;极端低温的累积效应高于极端高温,尤其是对缺血性心脏病死亡的影响。
        Objectives To examine the association between extremely cold and hot temperature with mortality of cerebrovascular and cardiovascular diseases and their time-patterns in one of the unbearably hot city Chongqing in China. Methods The data of cerebrovascular and cardiovascular mortality, meteorology and air pollution in 2011—2013 in Chongqing were collected. A distributed lag non-linear model(DLNM) was used to investigate the lag effect and the cumulative effect of extremely cold and hot temperature on mortality for lag(0~30) days, considering with air pollutants and short-term and long-term time trends as possible confounding factors. Results The effect of extremely high temperature on the mortality of cerebrovascular diseases lasted for two days(lag 0-1) with a peak RR(1.66, 95%CI: 1.19~2.33) at the day(lag 0); the effect of cold delayed by four days and lasted for twelve days(lag 4~15), with the highest risk(RR=1.22, 95%CI: 1.06~1.41) at the sixth day(lag 6). The effect of extremely high temperature on the mortality of cardiovascular diseases lasted for seven days with a peak RR(1.88, 95%CI: 1.12~3.15) at the day(lag 0); the effect of extremely low temperature delayed by one day and lasted for twenty-seven days, with the highest risk(RR=2.05, 95%CI: 1.32~3.20)at the second day(lag 2). The cumulative relative risk of extremely high temperature(34℃) on the mortality of cerebrovascular and cardiovascular diseases were 2.08(95%CI:1.49~2.90) and 2.63(95%CI:1.27~5.42), respectively; the cumulative relative risk of extremely low temperature(2℃) on the mortality of cerebrovascular and cardiovascular diseases were 4.61(95%CI:1.85~11.5) and 120(95%CI:3.72~463), respectively. Conclusions Both extremely cold and hot temperature increased the mortality of cerebrovascular and cardiovascular diseases with different patterns in Chongqing. The cumulative effect of extremely low temperature was higher than that of extremely high temperature on the mortality of cerebrovascular and cardiovascular diseases, especially on cardiovascular diseases.
引文
[1] Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis[C]. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2013.
    [2] Basagaňa X, Sartini C, Barrera-Gómez J, et al. Heat waves and cause-specific mortality at all ages[J]. Epidemiology, 2011, 22(6): 765-772.
    [3] Turner LR, Barnett AG, Connell D, et al. Ambient temperature and cardiorespiratory morbidity: a systematic review and meta-analysis[J]. Epidemiology, 2012, 23(4): 594-606.
    [4] Vasconcelos J, Freire E, Almendra R, et al. The impact of winter cold weather on acute myocardial infarctions in Portugal[J]. Environ Pollut, 2013, 183: 14-18.
    [5] Hu SS, Kong LZ, Gao RL, et al. Outline of the report on cardiovascular disease in China, 2010[J]. Biomed Environ Sci, 2012, 25(3): 251-256.
    [6] Zhang XJ, Ma WP, Zhao NQ, et al. Time series analysis of the association between ambient temperature and cerebrovascular morbidity in the elderly in Shanghai, China[J]. Sci Rep, 2016, 6: 19052.
    [7] Fukuda T, Ohashi N, Doi K, et al. Impact of seasonal temperature environment on the neurologic prognosis of out-of-hospital cardiac arrest: a nationwide, population-based cohort study[J]. J Crit Care, 2014, 29(5): 840-847.
    [8] Guo YM, Li SS, Zhang YS, et al. Extremely cold and hot temperatures increase the risk of ischaemic heart disease mortality: epidemiological evidence from China[J]. Heart, 2013, 99(3): 195-203.
    [9] Tanaka H, Shinjo M, Tsukuma H, et al. Seasonal variation in mortality from ischemic heart disease and cerebrovascular disease in Okinawa and Osaka: the possible role of air temperature[J]. J Epidemiol, 2000, 10(6): 392-398.
    [10] Zhang YS, Li SS, Pan XC, et al. The effects of ambient temperature on cerebrovascular mortality: an epidemiologic study in four climatic zones in China[J]. Environ Health, 2014, 13(1): 24.
    [11] Yang CY, Meng X, Chen RJ, et al. Long-term variations in the association between ambient temperature and daily cardiovascular mortality in Shanghai, China[J]. Sci Total Environ, 2015, 538: 524-530.
    [12] Bunker A, Wildenhain J, Vandenbergh A, et al. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence[J]. EBioMed, 2016, 6: 258-268.
    [13] Takumi I, Mishina M, Kominami S, et al. Ambient temperature change increases in stroke onset: analyses based on the Japanese regional metrological measurements[J]. J Nippon Med Sch, 2015, 82(6): 281-286.
    [14] Zheng DN, Arima H, Sato S, et al. Low ambient temperature and intracerebral hemorrhage: the INTERACT2 study[J]. PLoS One, 2016, 11(2): e0149040.
    [15] Hensel M, Stuhr M, Geppert D, et al. Relationship between ambient temperature and frequency and severity of cardiovascular emergencies: a prospective observational study based on out-of-hospital care data[J]. Int J Cardiol, 2017, 228: 553-557.
    [16] Wang QZ, Gao CL, Wang HC, et al. Ischemic stroke hospital admission associated with ambient temperature in Jinan, China[J]. PLoS One, 2013, 8(11): e80381.
    [17] Matsumoto M, Ishikawa S, Kajii E. Cumulative effects of weather on stroke incidence: a multi-community cohort study in Japan[J]. J Epidemiol, 2010, 20(2): 136-142.
    [18] Grjibovski AM, Nurgaliyeva N, Kosbayeva A, et al. No association between temperature and deaths from cardiovascular and cerebrovascular diseases during the cold season in Astana, Kazakhstan--the second coldest capital in the world[J]. Int J Circumpolar Health, 2012, 71(1): Article: 19769. doi: 10.3402/ijch.v71i0.19769.
    [19] Gao HL, Lan L, Yang C, et al. The threshold temperature and lag effects on daily excess mortality in Harbin, China: a time series analysis[J]. Int J Occup Environ Med, 2017, 8(2): 85-95.
    [20] Williams S, Nitschke M, Sullivan T, et al. Heat and health in Adelaide, South Australia: assessment of heat thresholds and temperature relationships[J]. Sci Total Environ, 2012, 414: 126-133.
    [21] Gasparrini A. Distributed lag linear and non-linear models: the R package dlnm[J]. J Stat Softw, 2011, 43(8): 1-20.
    [22] Wang XY, Li GX, Liu LQ, et al. Effects of extreme temperatures on cause-specific cardiovascular mortality in China[J]. Int J Environ Res Public Health, 2015, 12(12): 16136-16156.
    [23] Ruan Y, Zhang L, Niu JP, et al. Effects of cold air activity on serum catecholamine level in patients with cardiovascular or cerebrovascular disease[J]. J Hygiene Res, 2013, 42(4): 561-564.
    [24] Sharma HS, Westman J, Nyberg F, et al. Role of serotonin and prostaglandins in brain edema induced by heat stress: an experimental study in the young rat[C]//Brain Edema IX. Acta Neurochirurgica, vol 60. Vienna: Springer, 1994: 65-70.
    [25] Sharma HS, Dey PK. Influence of long-term acute heat exposure on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats[J]. Brain Res, 1987, 424(1): 153-162.
    [26] Xi GH, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage[J]. Lancet Neurol, 2006, 5: 53-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700