用户名: 密码: 验证码:
对甲基苯磺酸预处理麦草备料废渣制备纳米纤维素?
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lignocellulosic Nanofibrils Produced From Waste Wheat Straw Using p-Toluenesulfonic Acid Prehydrolysis
  • 作者:高莹 ; 卞辉洋 ; 焦亮 ; 戴红旗
  • 英文作者:GAO Ying;BIAN Hui-yang;JIAO Liang;DAI Hong-qi;Jiangsu Provincial Key Laboratory of Pulp &Paper Science and Technology, Nanjing Forestry University;
  • 关键词:麦草备料废渣 ; 对甲基苯磺酸 ; 盘磨处理 ; 纤维素纳米纤丝
  • 英文关键词:waste wheat straw;;p-toluenesulfonic acid;;disk grinding;;lignocellulosic nanofirbil
  • 中文刊名:XWSK
  • 英文刊名:Journal of Cellulose Science and Technology
  • 机构:南京林业大学江苏省制浆造纸科学与技术重点实验室;
  • 出版日期:2019-03-28
  • 出版单位:纤维素科学与技术
  • 年:2019
  • 期:v.27;No.105
  • 基金:国家自然科学基金项目(31470599);; 国家林业局948国际合作项目(2015454)
  • 语种:中文;
  • 页:XWSK201901006
  • 页数:7
  • CN:01
  • ISSN:44-1336/TQ
  • 分类号:36-42
摘要
以麦草备料废渣为原料,经对甲基苯磺酸水解和盘磨机械处理得到纤维素纳米纤丝,并采用化学组分分析、扫描电子显微镜、原子力显微镜、X-射线衍射仪和热重分析仪研究探讨灰分和木质素含量对纳米纤维素形态、尺寸、结晶度和热稳定性的影响。结果表明,经过水洗涤和酸水解处理后麦草备料废渣的木质素含量从18.56%减少到10.05%;同时,麦草备料废渣原料结晶度从50.5%升高到59.1%。原子力显微镜观察表明,灰分和木质素含量越低,得到的麦草备料废渣纤维素纳米纤丝分散性越好,尺寸分布越均匀,微纤丝平均直径在60 nm左右。热重分析表明,得到的纤维素纳米纤丝在500℃后仍有高达36.3%的残余率,说明该方法用于制备麦草备料废渣可以成功制得纳米纤维素,且反应条件温和,对结晶度损害小。
        Herein, cellulose nanofibrils were obtained from waste wheat straw(WWS) through multistep treatment process that combined p-toluenesulfonic acid hydrolysis, and disk grinding. The influences of ash and lignin content on the morphology, diameter, crystallinity, and thermal stability of cellulose nanofibrils were investigated using chemical composition analyses, scanning electron microscope(SEM), atomic force microscopy,X-ray diffractometer, and thermogravimetric analyzer(TGA). The results indicated that during prewashing and acid hydrolysis process, however, the crystallinity of was increased from 50.5% to 59.1%. Atomic force microscopy showed more uniform-sized cellulose nanofirbils with an average diameter of approximately 60 nm were obtained from the prewashing-assisted acid hydrolyzed WWS with lowest ash and lignin content. TG analysis indicated that the residual mass fraction still up to 36.3% even at temperature of 500℃, suggested the mild treatment process yielded the resulting cellulose nanofibrils with good thermal stability.
引文
[1]JonoobiM,OladiR,DavoudpourY,etal.Differentpreparationmethodsandpropertiesofnanostructuredcellulosefrom various natural resources and residues:A review[J]. Cellulose, 2015, 22(2):935-969.
    [2]Huang C, Lai C, Wu X, et al. An integrated process to produce bio-ethanol and xylooligosaccharides rich in xylobiose and xylotriose from high ash content waste wheat straw[J]. Bioresour Technol, 2017, 241:228-235.
    [3]BianH,GaoY,YangY,etal.Improvingcellulosenanofibrillationofwastewheatstrawusingthecombinedmethodsof prewashing, p-toluenesulfonic acid hydrolysis, disk grinding and endoglucanase post-treatment[J]. Bioresour Technol, 2018,256:321-327.
    [4]Huang C, Wu X, Huang Y, et al. Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content[J]. Bioresour Technol, 2016, 219:583-588.
    [5]吴清林,梅长彤,韩景泉,等.纳米纤维素制备技术及产业化现状[J].林业工程学报, 2018, 3(1):1-9.
    [6]Nechyporchuk O, Belgacem M N, Bras J. Production of cellulose nanofibrils:A review of recent advances[J]. Industrial Crops and Products, 2016, 93(25):2-25.
    [7]Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review:Structure, properties and nanocomposites[J]. Chem Soc Rev, 2011, 40(7):3941-3994.
    [8]Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J L, et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose[J]. Biomacromolecules, 2008, 9(1):57-65.
    [9]ChenLH,WangQQ,HirthK,etal.Tailoringtheyieldandcharacteristicsofwoodcellulosenanocrystals(CNC)using concentrated acid hydrolysis[J]. Cellulose, 2015, 22(3):1753-1762.
    [10]Qin Y L, Qiu X Q, Zhu J Y. Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis[J]. Sci Rep, 2016, 6:35602.
    [11]陈文帅,于海鹏,刘一星,等.木质纤维素纳米纤丝制备及形态特征分析[J].高分子学报, 2010(11):1320-1326.
    [12]LiuQ,LuY,AguedoM,etal.Isolationofhigh-puritycellulosenanofibersfromwheatstrawthroughthecombined environmentallyfriendlymethodsofsteamexplosion,microwave-assistedhydrolysisandmicrofluidization[J].ACS Sustainable Chemistry&Engineering, 2017, 5(7):6183-6191.
    [13]Bian H, Li G, Jiao L, et al. Enzyme-assisted mechanical fibrillation of bleached spruce kraft pulp to produce well-dispersed and uniform-sized cellulose nanofibrils[J]. Bioresources, 2016, 11(4):10483-10496.
    [14]WangWX,MozuchMD,SaboRC,etal.Productionofcellulosenanofibrilsfrombleachedeucalyptusfibersby hyperthermostable endoglucanase treatment and subsequent microfluidization[J]. Cellulose, 2015, 22(1):351-361.
    [15]BianH,ChenL,GleisnerR,etal.Producingwood-basednanomaterialsbyrapidfractionationofwoodat80℃usinga recyclable acid hydrotrope[J]. Green Chem, 2017, 19(14):3370-3379.
    [16]Wang Q Q, Zhu J Y. Effects of mechanical fibrillation time by disk grinding on the properties of cellulose nanofibrils[J]. Tappi Journal, 2016, 15(6):419-423.
    [17]Sluiter A, Hames B, Ruiz R, et al. Determination of ash in biomass[M]. NREL Chemical Analysis and Testing Laboratory Analytical Procedures, 2008, NREL, Golden CO. NREL/TP-510-42622.
    [18]SluiterA,HamesB,RuizR,etal.Determinationofstructuralcarbohydratesandlignininbiomass[M].NRELChemical Analysis and Testing Laboratory Analytical Procedures, 2008, NREL, Golden CO. NREL/TP-510-42618.
    [19]Segal L, Creely J J, Martin A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer[J]. Text Res J, 1959, 29:786-794.
    [20]Bian H, Chen L, Dai H, et al. Integrated production of lignin containing cellulose nanocrystals(LCNC)and nanofibrils(LCNF)using an easily recyclable di-carboxylic acid[J]. Carbohydrate Polymers, 2017, 167:167-176.
    [21]Chen L, Dou J, Ma Q, et al. Rapid and near-complete dissolution of wood lignin at≤80℃by a recyclable acid hydrotrope[J].Science Advances, 2017, 3:e1701735.
    [22]WangY,TanH,WangX,etal.Studyonextractingavailablesaltfromstraw/woodybiomassashesandpredictingits slagging/fouling tendency[J]. J Clean Prod, 2017, 155:164-171.
    [23]Agarwal U P, Ralph S A, Baez C, et al. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size[J]. Cellulose, 2017, 24(5):1971-1984.
    [24]Chen L, Zhu J Y, Baez C, et al. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids[J]. Green Chem, 2016, 18:3835-3843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700