用户名: 密码: 验证码:
生长素介导细胞分裂素(玉米素)调控杜鹃兰侧芽萌发
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Auxin Regulated Lateral Buds Germination in Cremastra appendiculata via the Regulation of Cytokinin(Zeatin)
  • 作者:吕享 ; 叶睿华 ; 田海露 ; 吉宁 ; 刘思佳 ; 张明生
  • 英文作者:LV Xiang;YE Rui-Hua;TIAN Hai-Lu;JI Ning;LIU Si-Jia;ZHANG Ming-Sheng;School of Life Sciences/State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University;School of Life Sciences/State Engineering Technology Institute for Karst Desertification Control, Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region(Ministry of Education) , Guizhou University;
  • 关键词:杜鹃兰 ; 生长素 ; 细胞分裂素 ; 侧芽 ; 生长素运输抑制剂
  • 英文关键词:Cremastra appendiculata;;Auxin;;Cytokinin;;Lateral buds;;Auxin transport inhibitors
  • 中文刊名:NYSB
  • 英文刊名:Journal of Agricultural Biotechnology
  • 机构:贵州大学生命科学学院/国家喀斯特石漠化防治工程技术研究中心/山地植物资源保护与种质创新教育部重点实验室;
  • 出版日期:2018-11-25
  • 出版单位:农业生物技术学报
  • 年:2018
  • 期:v.26
  • 基金:国家自然科学基金(No.81360613和No.81660627);; 国家重点研发计划课题(No.2016YFC0502604);; 贵州省科技计划重大专项课题(黔科合平台人才[2017]5411-06);; 国家喀斯特石漠化防治工程技术研究中心建设项目(No.2012FU125X13);; 贵州省科技创新人才团队建设专项资金(黔科合平台人才[2016]5624);; 贵州省教育厅创新群体重大研究项目(黔教合KY字[2016]023);; 贵州省研究生科研基金(黔教研合KYJJ字[2016]011);; 贵州大学国家级重点培育项目(黔科合平台人才[2017]5788)
  • 语种:中文;
  • 页:NYSB201811007
  • 页数:8
  • CN:11
  • ISSN:11-3342/S
  • 分类号:56-63
摘要
杜鹃兰(Cremastra appendiculata)为多年生珍稀药用植物,自然条件下有性繁殖困难,营养繁殖因新生假鳞茎顶端抑制而不能有效进行"分枝"发育扩增假鳞茎,致使其繁殖系数极低。为探讨杜鹃兰假鳞茎成串生长的内在机制,本研究通过打顶及生长素运输抑制剂N-1-氨甲酰苯甲酸萘酯(N-1-naphthylphthalamic acid, NPA)和2,3,5-三碘苯甲酸(2,3,5-triiodibenzoic acid, TIBA)处理杜鹃兰假鳞茎,借此改变其内源植物激素水平以促进假鳞茎侧芽生长。研究结果表明,打顶及生长素运输抑制剂处理6 d后,侧芽内生长素水平显著降低(P<0.05),细胞分裂素水平则显著提高(P<0.05),且细胞分裂素水平的升高与显著上调细胞分裂素合成酶的关键基因—异戊烯基转移酶基因(isopentenyl transferase, IPT)的表达是一致的。处理40 d后,打顶、NPA和TIBA使二年生假鳞茎侧芽萌发率从0%分别提高到95%、85%和90%,以及三年生假鳞茎也分别提高到15%、76%和75%;处理90 d后,单株出苗数分别可达到对照的2.20、3.13和3.05倍。然而,外施玉米素(zeatin, ZT),仅使二年生和三年生假鳞茎萌发率提高至51%和35%,并未提高出苗率。可见,生长素可能通过调控IPT的表达,以此调控细胞分裂素水平,从而间接控制杜鹃兰侧芽的生长。本研究结果有助于提高杜鹃兰的繁殖系数,为地下茎顶端优势的理论研究提供了参考。
        Cremastra appendiculata is a perennial rare medicinal plant. Under natural conditions, it's hard to reproduce sexually, and the vegetative reproduction cannot effectively branch development to increase the number of pseudobulb due to apical inhibition of newborn pseudobulb. These factors lead to a very low breeding coefficient. Therefore, to explore internal mechanism of pseudobulbs growth in cluster, the pseudobulbs of C. appendiculata were treated by decapitation, auxin transport inhibitors N-1-naphthylphthalamic acid(NPA) and 2, 3, 5-triiodibenzoic acid(TIBA). In this way, endogenous planthormone levels might be changed to promote the growth of lateral buds of C. appendiculata. After decapitation and application of auxin transport inhibitors(NPA and TIBA) treated the pseudobulb of C. appendiculata for 6 days, the results showed that auxin levels in the lateral buds were significantly reduced(P<0.05), and cytokinin levels were obviously increased(P<0.05). The results of qRT-PCR showed that cytokinin levels increased because of rapidly up-regulated key genes of cytokinin synthetase(isopentenyl transferase, IPT)after treatments. After the decapitation, NPA and TIBA treating for 40 d, the germination rate of the biennial pseudobulbs in pseudobulbs string were increased from 0% to 95%, 85% and 90%, respectively, and the triennial pseudobulbs were increased from 0% to 15%, 76% and 75%, respectively. For the treatments of decapitation, NPA and TIBA, the number of seedlings per plant could reach to 2.20, 3.13 and 3.05 times of the control after 90 d, respectively. The application of zeatin promoted the germination of lateral buds of C.appendiculata in a certain extent(biennial: 51%; triennial: 35%), but did not increase the rate of seedling emergence, which indicated that cytokinin promoted the germination of lateral buds, but could not promote to continued growth. The change of auxin levels was necessary for the continued growth of lateral buds. The results of this study indicated that auxin might regulate transcriptional level of IPT gene to control cytokinin level, and indirectly regulated lateral buds development and growth of C. appendiculata. This research increases the propagation coefficient of C. appendiculata, and provides a reference for the apical dominance theory of underground stems.
引文
王汪中,张明生,吕享,等.2017.杜鹃兰种子萌发适宜培养基的筛选[J].北方园艺,11:157-161.(Wang W Z,Zhang M S,Lv X,et al.2017.Media screening on seeds germination of Cremastra appendiculata[J].Northern Horticulture,11:157-161.)
    曾庆钱,陈厚彬,鲁才浩,等.2006.HPLC测定荔枝不同器官中内源激素流程的优化.果树学报,23(1):145-148.(Zeng Q Q,Chen H B,Lu C H,et al.2006.An optimized HPLC procedure for analyzing endogenous hormones in different organs of litchi[J].Journal of Fruit Science,23(1):145-148.)
    Balla J,Kalousek P,Reinohl V,et al.2011.Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth[J].The Plant Journal.65:571-577.
    Brewer P B,Dun E A,Ferguson B J,et al.2009.Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis[J].Plant physiology.150:452-493.
    Domagalska M A,Leyser O.2011.Signal integration in the control of shoot branching[J].Molecular Cell Biology.12(4):211-221.
    Dun E A,de Saint Germain A,Rameau C,et al.2012.Antagonistic action of strigolactone and cytokinin in bud outgrowth control[J].Plant Physiology,158:487-498.
    Ferguson B J,Beveridge C A.2009.Roles for auxin,cytokinin,and strigolactone in regulating shoot branching[J].Plant Physiology,149(4):1929-1944.
    Foo E,Bullier E,Goussot M,et al.2005.The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea[J].The Plant Cell,17:464-474.
    Gordon S P,Chickarmane V S,Ohno C,et al.2009.Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem[J].Processdings of the National Academy of Science of the USA,106(38):16529-16534.
    Hayward A,Stirnberg P,Beveridge C,et al.2009.Interactions between auxin and strigolactone in shoot branching control[J].Plant Physiology,151:400-412.
    Ikeda Y,Nonaka H,Furumai T,et al.2005.Cremastrine,pyrrolizidine alkaloid from Cremastra appendiculata[J].Journal of Natural Products,68(7):572-573.
    Liu L,Li J,Zeng K W,et al.2013.Three new phenanthrenes form Cremastra appendiculata(D.Don)Makino[J].Chinese Chemical Letters,24:737-739.
    Liu L,Li J,Zeng K W,et al.2015.Five new benzylphenanthrenes from Cremastra appendiculata[J].Fitoterapia,103:27-32.
    Liu L,Li J,Zeng K W,et al.2016.Five new biphenanthrenes from Cremastra appendiculata[J].Molecules,21(8):1089-1099.
    Lv X,Zhang M S,Wu Y Q,et al.2017.The Roles of Auxin in Regulating“Shoot Branching”of Cremastra appendiculata[J].Journal of Plant Growth Regulation,36:281-289.
    Muller D,Waldie T,Miyawaki K,et al.2015.Cytokinin is required for escape but not release from auxin mediated apical dominance[J].The Plant Journal,82:874-886.
    Nordstrom A,Tarkowski P,Tarkowska D,et al.2004.Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana:A factor of potential importance for auxin-cytokinin-regulated development[J].Proceedings of the National Academy of Sciences of the USA,101(21):8039-8044.
    Prusinkiewicz P,Crawford S,Smith R S,et al.2009.Control of bud activation by an auxin transport switch[J].Proceedings of the National Academy of Sciences of the USA,106:17431-17436.
    Rameau C,Bertheloot J,Leduc N,et al.2015.Multiple pathways regulate shoot branching[J].Frontiers in Plant Science,5:741-756.
    Shim J S,Kim J H,Lee J Y,et al.2004.Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata[J].Planta Medica,70(2):171-173.
    Tanaka M,Takei K,Kojima M,et al.2006.Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominace[J].Plant Journal,45:1028-1036.
    Tarkowski P,Ge L,Hong Yong J W,et al.2009.Analytical methods for cytokinins[J].Trends in Analytical Chemistry.28(3):323-335.
    Wang Y,Guan S H,Meng Y H,et al.2013.Phenanthrenes,9,10-dihydrophenanthrenes,bibenzyls with their derivatives,and malate or tartrate benzyl ester glucosides from tubers of Cremastra appendiculata[J].Phytochemistry,94:268-276.
    Waters M T,Brewer P B,Bussell J D,et al.2012.The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones[J].Plant Physiology,159:1073-1085.
    Xue Z,Li S,Wang S J,et al.2006.Mono-,Bi,and Triphenanthrenes form the tubers of Cremastra appendiculata[J].Journal of Natural Products,69(6):907-913.
    Zhang G Q,Liu KW,Li Z,et al.2017.The apostasia genome and the evolution of orchids[J].Nature,549:379-396.
    Zhang S,Li G,Fang J,et al.2010.The interactions among DWARF10,auxin and cytokinin underlie lateral bud outgrowth in rice[J].Journal of Integrative Plant Biology.52:626-638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700