用户名: 密码: 验证码:
300MW燃煤电站化学团聚强化飞灰细颗粒物排放控制的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Emission Characteristics of Chemical Agglomeration of Fly Ash Fine Particles From a 300MW Coal-fired Power Plant Boiler
  • 作者:郭沂权 ; 赵永椿 ; 李高磊 ; 张军营
  • 英文作者:GUO Yiquan;ZHAO Yongchun;LI Gaolei;ZHANG Junying;State Key Lab of Coal Combustion, School of Energy and Power Engineering (Huazhong University of Science and Technology);
  • 关键词:细颗粒物 ; 化学团聚 ; 超低排放 ; 燃煤电厂 ; 排放特性
  • 英文关键词:fine particulate;;chemical agglomeration;;ultra-low emission;;coal-fired power plant;;emission characteristics
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:煤燃烧国家重点实验室(华中科技大学);
  • 出版日期:2019-02-05
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.614
  • 基金:国家重点研发计划项目(2016YFB0600604);; 国家自然科学基金项目(41672148)~~
  • 语种:中文;
  • 页:ZGDC201903012
  • 页数:11
  • CN:03
  • ISSN:11-2107/TM
  • 分类号:128-137+328
摘要
煤炭燃烧会产生大量飞灰颗粒物,其造成的空气污染给人类健康及生存环境带来了巨大影响。针对江西某电厂2???340MW燃煤机组,进行了细颗粒物化学团聚工业应用工程试验。通过安装自行设计制造的化学团聚系统,综合考察了化学团聚技术对燃煤电厂静电除尘器(electrostaticprecipitators,ESP)效率的影响,对电厂运行参数的影响,及团聚后排放至大气的颗粒物特性。试验结果表明,喷入化学团聚剂后,细颗粒物排放浓度显著降低。4号机组连续喷入240min团聚剂后,ESP后颗粒物浓度下降约61.7%,脱硫后颗粒物浓度下降了约77.9%;3号机组连续喷入化学团聚剂168h后,ESP后颗粒物平均浓度为22.6mg/m3。脱硫后颗粒物平均浓度为5.7mg/m3。采集脱硫后排入大气的烟尘颗粒物,粒径峰值为0.8?m,绝大多数飞灰颗粒粒径在0.1~1?m内。连续喷入化学团聚剂后,ESP后SO2浓度由2866mg/m3降至2354mg/m3,下降了约17.9%;NOx浓度和O2浓度无明显变化;烟气湿度提高了约0.4%。
        Fly ash particles caused by coal combustion had given rise to the air pollution, which had great impact on human health and living environment. The industrial application trials of fine particle chemical agglomeration in a power plant with 2 ′ 340 MW coal-fired boilers in Jiangxi province was studied in this paper. Self-designed and manufactured chemical agglomeration system was equipped and the effect of chemical agglomeration technique on removal efficiency of electrostatic precipitators(ESP) and operational parameters of coal-fired power plant were studied, as well as the emission characteristics of fly ash particles. The experimental results showed that fine particle emission concentration significantly decreased after chemical agglomeration solutions were sprayed. In No.4 boiler, after continuous-spraying the chemical agglomeration solutions for about 240 minutes, the average particle concentration after ESP decreased by 61.7%. The particle concentration after wet desulphurization(WFGD) also decreased by about 77.9%. In No.3 boiler, after continuous-spraying the chemical agglomeration solutions for about 168 hours, the average particle concentration after ESP decreased to 22.6 mg/m3 and the particle concentration after WFGD decreased to as low as 5.7 mg/m3. The peak diameter of the fly ash particles which were collected after WFGD was 0.8mm. The majority particle size of fly ash range in 0.1~1mm. After continuous-spraying the chemical agglomeration solutions, the average SO2 concentration after ESP decreased from 2866 mg/m3 to 2354 mg/m3, which was decreased by 17.9%. While the average NOx concentration and the O2 concentration showed no obvious change. Besides, the humidity of flue gas increased by 0.4%.
引文
[1]刘慧媛.能源、环境与区域经济增长研究[D].上海:上海交通大学,2013.Liu Huiyuan.A study on energy,environment and regional economy growth[D].Shanghai:Shanghai Jiao Tong University,2013(in Chinese).
    [2]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2016.National Bureau of Statistics of the People's Republic of China.China statistical yearbook[M].Beijing:China Statistics Press,2016(in Chinese).
    [3]Yl?talo S I,Hautanen J.Electrostatic precipitator penetration function for pulverized coal combustion[J].Aerosol Science and Technology,1998,29(1):17-30.
    [4]Hautanen J,Kilpel?inen M,Kauppinen E I,et al.Electrical agglomeration of aerosol particles in an alternating electric field[J].Aerosol Science and Technology,1995,22(2):181-189.
    [5]Wadenpohl C,L?ffler F.Electrostatic agglomeration and centrifugal separation of diesel soot particles[J].Chemical Engineering and Processing:Process Intensification,1994,33(5):371-377.
    [6]Patterson H S,Cawood W.Phenomena in a sounding tube[J].Nature,1931,127(3209):667.
    [7]Shirokova N L.Aerosol coagulation[M].Rozenberg L D.Physical Principles of Ultrasonic Technology.Boston,MA:Springer,1973:475-539.
    [8]Schauer P J.Removal of submicron aerosol particles from moving gas stream[J].Industrial&Engineering Chemistry,1951,43(7):1532-1538.
    [9]Lancaster B W,Strauss W.A study of steam injection into wet scrubbers[J].Industrial&Engineering Chemistry Fundamentals,1971,10(3):362-369.
    [10]Di Stasio S.Observation of restructuring of nanoparticle soot aggregates in a diffusion flame by static light scattering[J].Journal of Aerosol Science,2001,32(4):509-524.
    [11]Raper J A,Amal R.Measurement of aggregate fractal dimensions using static light scattering[J].Particle&Particle Systems Characterization,1993,10(5):239-245.
    [12]Wei Feng,Zhang Junying,Zheng Chuguang.Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion[J].Journal of Environmental Sciences,2005,17(2):335-339.
    [13]李海龙,张军营,赵永椿,等.燃煤细颗粒固液团聚实验研究[J].中国电机工程学报,2009,29(29):62-66.Li Hailong,Zhang Junying,Zhao Yongchun,et al.Experimental study on solid-liquid two-phase agglomeration of fine particles from coal combustion[J].Proceedings of the CSEE,2009,29(29):62-66(in Chinese).
    [14]Zhang Kai,Zhang Junying,Li Hailong,et al.Agglomeration modelling of sub-micron particle during coal combustion based on the flocculation theory[C]//11th International Conference on Electrostatic Precipitation Electrostatic Precipitation.Hangzhou:Springer,2009:234-247.
    [15]Li Hailong,Zhang Junying,Zhao Yongchun,et al.Wettability of fly ashes from four coal-fired power plants in China[J].Industrial&Engineering Chemistry Research,2011,50(13):7763-7771.
    [16]李海龙,张军营,赵永椿,等.燃煤飞灰物理化学特性及其润湿机理研究[J].工程热物理学报,2009,30(9):1597-1600.Li Hailong,Zhang Junying,Zhao Yongchun,et al.Study on physicochemical characteristic and wetting mechanism of fly ash in coal fired power plant[J].Journal of Engineering Thermophysics,2009,30(9):1597-1600(in Chinese).
    [17]魏凤.燃煤亚微米颗粒的形成和团聚机制的研究[D].武汉:华中科技大学,2005.Wei Feng.Study on sub-micron particle formation and agglomeration mechanism from coal combustion[D].Wuhan:Huazhong University of Science and Technology,2005(in Chinese).
    [18]陈俊.燃煤超细颗粒物团聚的实验研究[D].武汉:华中科技大学,2005.Chen Jun.Experimental study of agglomeration of submicron particle in pulverized coal combustion[D].Wuhan:Huazhong University of Science and Technology,2005(in Chinese).
    [19]赵永椿,张军营,魏凤,等.燃煤超细颗粒物团聚促进机制的实验研究[J].化工学报,2007,58(11):2876-2881.Zhao Yongchun,Zhang Junying,Feng Wei,et al.Experimental study on agglomeration of submicron particles from coal combustion[J].Journal of Chemical Industry and Engineering(China),2007,58(11):2876-2881(in Chinese).
    [20]Forbes E.Shear,selective and temperature responsive flocculation:a comparison of fine particle flotation techniques[J].International Journal of Mineral Processing,2011,99(1-4):1-10.
    [21]Rajniak P,Stepanek F,Dhanasekharan K,et al.Acombined experimental and computational study of wet granulation in a Wurster fluid bed granulator[J].Powder Technology,2009,189(2):190-201.
    [22]Balakin B V,Shamsutdinova G,Kosinski P.Agglomeration of solid particles by liquid bridge flocculants:pragmatic modeling[J].Chemical Engineering Science,2015,122:173-181.
    [23]Balakin B V,Kutsenko K V,Lavrukhin A A,et al.The collision efficiency of liquid bridge agglomeration[J].Chemical Engineering Science,2015,137:590-600.
    [24]陶国龙.电除尘器烟气喷雾增湿增效技术[J].电力环境保护,2001,17(2):28-30,33.Tao Guolong.Moisturizing and enhancing technology with spraying to flue gas in ESP[J].Electric Power Environmental Protection,2001,17(2):28-30,33(in Chinese).
    [25]康梅强,邓佳佳,陈德奇,等.脱硫废水烟道蒸发零排放处理的可行性分析[J].土木建筑与环境工程,2013,35(S1):238-240.Kang Meiqiang,Deng Jiajia,Chen Deqi,et al.Analysis on the feasibility of desulfurization wastewater evaporation treatment in flue gas duct without pollution discharge[J].Journal of Civil,Architectural&Environmental Engineering,2013,35(S1):238-240(in Chinese).
    [26]Johansen A,Sch?fer T.Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer[J].European Journal of Pharmaceutical Sciences,2001,14(2):135-147.
    [27]Baldrey K E.Advanced flue gas conditioning as a retrofit upgrade to enhance PM collection from coal-fired electric utility boilers[R].Littleton,Colorado:ADAEnvironmental Solutions,LLC,2002.
    [28]赵汶,刘勇,鲍静静,等.化学团聚促进燃煤细颗粒物脱除的试验研究[J].中国电机工程学报,2013,33(20):52-58.Zhao Wen,Liu Yong,Bao Jingjing,et al.Experimental research on fine particles removal from flue gas by chemical agglomeration[J].Proceedings of the CSEE,2013,33(20):52-58(in Chinese).
    [29]Durham M D,Schlager R J,Ebner T G,et al.Method and apparatus for decreased undesired particle emissions in gas streams:US,5893943[P].1999-04-13.
    [30]Ridaoui H,Jada A,Vidal L,et al.Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,278(1-3):149-159.
    [31]Guo Yiquan,Zhang Junying,Zhao Yongchun,et al.Chemical agglomeration of fine particles in coal combustion flue gas:experimental evaluation[J].Fuel,2017,203:557-569.
    [32]郭沂权,张军营,赵永椿,等.50MW燃煤电站锅炉细颗粒物化学团聚示范工程试验研究[J].中国电机工程学报,2016,36(S1):87-94.Guo Yiquan,Zhang Junying,Zhao Yongchun,et al.Experimental research on fine particles chemical agglomeration demonstration project in a 50MWcoal-fired power plant boiler[J].Proceedings of the CSEE,2016,36(S1):87-94(in Chinese).
    [33]Campo V L,Kawano D F,da Silva D B Jr,et al.Carrageenans:biological properties,chemical modifications and structural analysis-a review[J].Carbohydrate Polymers,2009,77(2):167-180.
    [34]Viebke C,Piculell L,Nilsson S.On the mechanism of gelation of helix-forming biopolymers[J].Macromolecules,1994,27(15):4160-4166.
    [35]环境保护部办公厅.燃煤电厂超低排放烟气治理工程技术规范(征求意见稿)[R].北京:环境保护部办公厅,2017.General Office of the Ministry of Environmental Protection of the People's Republic of China.Technical specifications for flue gas ultra-low emission engineering of coal-fired power plant[R].Beijing:General Office of the Ministry of Environmental Protection of the People's Republic of China,2017(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700