用户名: 密码: 验证码:
微管相关新发突变基因MTUS1在心肌致密化过程中的作用机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of de novo mutation in the MTUS1 gene involved in compaction of ventricular myocardium
  • 作者:白雪寒 ; 周元琳 ; 欧阳娜 ; 刘玲娟 ; 吕铁伟 ; 田杰
  • 英文作者:Bai Xuehan;Zhou Yuanlin;Oyang Na;Liu Lingjuan;Lü Tiewei;Tian Jie;Department of Cardiology,Children's Hospital of Chongqing Medical University,Children's Development and Disorders Key Laboratory of Ministry of Education,International and National Science and Technology Cooperation Base of Children Development and Critical Disorders,Chongqing Key Laboratory of Pediatrics;
  • 关键词:微管相关肿瘤抑制因子1 ; 突变 ; 微管 ; RhoA ; 细胞迁移
  • 英文关键词:microtubule-associated tumor suppressor 1;;mutation;;microtubule;;RhoA;;cell migration
  • 中文刊名:ZQYK
  • 英文刊名:Journal of Chongqing Medical University
  • 机构:重庆医科大学附属儿童医院心脏内科儿童发育疾病研究教育部重点实验室儿童发育重大疾病国家国际科技合作基地儿科学重庆市重点实验室;
  • 出版日期:2019-04-22 15:00
  • 出版单位:重庆医科大学学报
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学基金面上资助项目(编号:81570218)
  • 语种:中文;
  • 页:ZQYK201906003
  • 页数:7
  • CN:06
  • ISSN:50-1046/R
  • 分类号:14-20
摘要
目的:探讨新发突变基因微管相关肿瘤抑制因子1(microtubule-associated tumor suppressor 1,MTUS1)在心肌致密化过程中的作用机制。方法:构建过表达慢病毒突变组MTUS1、野生组MTUS1及空载组(分别记为突变组、野生组及空载组)CP15-5a细胞模型,Real-time PCR检测各组MTUS1及小GTPase RhoA(ras homolog family member A,RhoA)的m RNA表达水平,Western blot检测各组RhoA蛋白表达水平,细胞免疫荧光检测各组α-tubulin荧光表达强度,并对各组细胞进行细胞划痕实验,检测各组细胞迁移情况。结果:成功构建过表达慢病毒突变组、野生组及空载组细胞模型。细胞免疫荧光结果显示,与野生组相比,突变组细胞α-tubulin荧光强度表达下降(P=0.006)。Real-time PCR及Western blot结果显示,与野生组相比,突变组RhoA的mRNA及蛋白表达水平明显增高(P=0.005,P=0.01)。划痕实验结果显示,与野生组相比,突变组细胞在划痕后6 h、12 h的迁移速率增快(均P=0.000)。结论:MTUS1新发突变是保护性突变,通过降低CP15-5a细胞微管稳定性,并调节RhoA表达增强细胞迁移,从而减低心肌致密化不全的发生率。
        Objective:To investigate the mechanism of de novo mutation in the microtubule-associated tumor suppressor 1(MTUS1)gene in the compaction of ventricular myocardium. Methods:Lentiviral vectors containing mutant MTUS1 gene or wild MTUS1 gene or empty vectors were co-infected into CP15-5 a cells(mutation group,wild group,and vector group,respectively). The m RNA expression of MTUS1 and small GTPase-ras homolog family member A(RhoA)was measured by real-time PCR. The protein expression of RhoA was measured by Western blot. The fluorescence intensity of α-tubulin was determined by immunofluorescence assay. Cell migration activity was evaluated by wound-healing assay. Results:Lentiviral vectors containing mutant MTUS1 or wild MTUS1 or empty vectors were successfully co-infected into CP15-5 a cells,which was confirmed by fluorescence staining and real-time PCR. Immunofluorescence assay results showed that the mutation group had a lower fluorescence intensity of α-tubulin than the wild group(P=0.006,P<0.01). Real-time PCR and Western blot results showed that the mutation group had significantly higher m RNA and protein expression of RhoA compared with the wild group(P=0.005,P=0.01). Wound-healing assay showed that the mutation group had significantly higher migration rates at 6 and 12 hours after scratch compared with the wild group(P=0.000,P=0.000). Conclusion:A de novo mutation in the MTUS1 gene is a protective mutation for decreasing the incidence of noncompaction of ventricular myocardium via reducing the stability of microtubules in CP15-5 a cells and increasing cell migration activity by regulating the expression of RhoA.
引文
[1] Kubik M,Dabrowska-Kugacka A,Lewicka E,et al. Predictors of poor outcome in patients with left ventricular noncompaction:Review of the literature[J]. Adv Clin Exp Med,2018,27(3):415-422.
    [2] Finsterer J,Stollberger C,Towbin JA. Left ventricular noncompaction cardiomyopathy:cardiac,neuromuscular,and genetic factors[J]. Nat Rev Cardiol,2017,14(4):224-237.
    [3] Towbin JA,Jefferies JL. Cardiomyopathies due to left ventricular noncompaction,mitochondrial and storage diseases,and inborn errors of metabolism[J]. Circ Res,2017,121(7):838-854.
    [4] Takasaki A,Hirono K,Hata Y,et al. Sarcomere gene variants act as a genetic trigger underlying the development of left ventricular noncompaction[J]. Pediatr Res,2018,84(5):733-742.
    [5] Ajima R,Bisson JA,Helt JC,et al. DAAM1 and DAAM2 are corequired for myocardial maturation and sarcomere assembly[J]. Dev Biol,2015,408(1):126-139.
    [6] Deng X,Fink G,TAM B,et al. Four-stranded mini microtubules formed by Prosthecobacter BtubAB show dynamic instability[J]. Proc Natl Acad Sci U S A,2017,114(29):E5950-5958.
    [7] Bozgeyik I,Yumrutas O,Bozgeyik E. MTUS1,a gene encoding angiotensin-Ⅱtype 2(AT2)receptor-interacting proteins,in health and disease,with special emphasis on its role in carcinogenesis[J]. Gene,2017,626:54-63.
    [8] Xu Y,Liu X,Li H. Improvement of the diagnosis of left ventricular noncompaction cardiomyopathy after analyzing both advantages and disadvantages of echocardiography and CMRI[J]. Prog Cardiovasc Dis,2018,61(5-6):491-493.
    [9] Zhao T,Ding X,Chang B,et al. MTUS1/ATIP3a down-regulation is associated with enhanced migration,invasion and poor prognosis in salivary adenoid cystic carcinoma[J]. BMC Cancer,2015,15:203.
    [10] Dong X,Fan P,Tian T,et al. Recent advancements in the molecular genetics of left ventricular noncompaction cardiomyopathy[J]. Clin Chim Acta,2017,465:40-44.
    [11] Choquet C,THM N,Sicard P,et al. Deletion of Nkx2-5 in trabecular myocardium reveals the developmental origins of pathological heterogeneity associated with ventricular non-compaction cardiomyopathy[J]. PLoS Genet,2018,14(7):e1007502
    [12] Piccolo P,Attanasio S,Secco I,et al. MIB2 variants altering NOTCH signalling result in left ventricle hypertrabeculation/non-compaction and are associated with Ménétrier-like gastropathy[J]. Hum Mol Genet,2017,26(1):33-43.
    [13] Miller EM,Hinton RB,Czosek R,et al. Genetic testing in pediatric left ventricular noncompaction[J]. Circ Cardiovasc Genet,2017,10(6):e001735.
    [14] Parbin S,Pradhan N,Das L,et al. DNA methylation regulates Microtubule-associated tumor suppressor 1 in human non-small cell lung carcinoma[J]. Exp Cell Res,2019,374(2):323-332.
    [15] Liu Y,Chen H,Shou W. Potential common pathogenic pathways for the left ventricular noncompaction cardiomyopathy(LVNC)[J]. Pediatr Cardiol,2018,39(6):1099-1106.
    [16] Rodrigues-Ferreira S,Nehlig A,Monchecourt C,et al. Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis[J]. Breast Cancer Res Treat,2019,173(3):573-583.
    [17] Ito S,Asakura M,Liao Y,et al. Identification of the Mtus1 splice variant as a novel inhibitory factor against cardiac hypertrophy[J]. J Am Heart Assoc,2016,5(7):e003521.
    [18] van Dijk J,Bompard G,Cau J,et al. Microtubule polyglutamylation and acetylation drive microtubule dynamics critical for platelet formation[J]. BMC Biol,2018,16(1):116.
    [19] Roostalu J,Rickman J,Thomas C,et al. Determinants of polar versus nematic organization in networks of dynamic microtubules and mitotic motors[J]. Cell,2018,175(3):796-808.e14.
    [20] López-Doménech G,Covill-Cooke C,Ivankovic D,et al. Miro proteins coordinate microtubule-and actin-dependent mitochondrial transport and distribution[J]. EMBO J,2018,37(3):321-336.
    [21] Cappello S. Small Rho-GTPases and cortical malformations:finetuning the cytoskeleton stability[J]. Small GTPases,2013,4(1):51-56.
    [22] Wang X,Tang P,Guo F,et al. RhoA regulates activin B-induced stress fiber formation and migration of bone marrow-derived mesenchymal stromal cell through distinct signaling[J]. Biochim Biophys Acta Gen Subj,2017,1861(1 Pt A):3011-3018.
    [23] Wang T,Hamilla S,Cam M,et al. Extracellular matrix stiffness and cell contractility control RNA localization to promote cell migration[J]. Nat Commun,2017,8(1):896.
    [24] Kitakaze M. Dysfunction of microtubules induces cardiac dysfunction[J]. EBioMedicine,2018,37:3-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700