用户名: 密码: 验证码:
牺牲-耗能型伸臂桁架的设计和试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:DESIGN AND EXPERIMENTAL STUDY OF A SACRIFICIAL-ENERGY DISSIPATION OUTRIGGER
  • 作者:朱亚宁 ; 林楷奇 ; 蒋庆 ; 林元庆 ; 杨青顺 ; 陆新征
  • 英文作者:ZHU Ya-ning;LIN Kai-qi;JIANG Qing;LIN Yuan-qing;YANG Qing-shun;LU Xin-zheng;School of Civil Engineering,Hefei University of Technology;Beijing Engineering Research Center of Steel and Concrete Composite Structures,Tsinghua University;China Nuclear Power Engineering Co.,Ltd.,Zhengzhou Branch;School of Civil Engineering,Qinghai University;Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry,Tsinghua University;
  • 关键词:超高层建筑 ; 抗震分析 ; 普通伸臂桁架 ; BRB伸臂桁架 ; 牺牲-耗能型伸臂桁架 ; 塑性耗能
  • 英文关键词:super-tall buildings;;seismic analysis;;conventional outrigger;;BRB outrigger;;sacrificial-energy dissipation outrigger;;dissipated inelastic energy
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:合肥工业大学土木与水利工程学院;清华大学北京市钢与混凝土组合结构工程技术研究中心;中国核电工程有限公司郑州分公司;青海大学土木工程学院;清华大学土木工程安全与耐久教育部重点试验室;
  • 出版日期:2019-02-25
  • 出版单位:工程力学
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金项目(51778341,51408179);; 亚热带建筑科学国家重点实验室项目(2015ZA04)
  • 语种:中文;
  • 页:GCLX201902011
  • 页数:10
  • CN:02
  • ISSN:11-2595/O3
  • 分类号:107-116
摘要
伸臂桁架是超高层建筑中的重要抗侧力构件。该文以一个超高层框架-核心筒-伸臂桁架结构为研究对象,分别采用普通伸臂桁架和防屈曲支撑(BRB)伸臂桁架进行独立设计,得到两个结构模型—普通伸臂桁架结构(CO)和BRB伸臂桁架结构(BO)。罕遇地震弹塑性分析结果表明,由于BO模型中的BRB伸臂桁架始终保持较高强度,反而导致结构中其他构件的塑性耗能比例增加,最终其塑性耗能效果不如CO模型中的普通伸臂桁架。因此,该文提出了一种新型牺牲-耗能型伸臂桁架,通过试验研究和有限元模拟分析了牺牲-耗能型伸臂桁架的主要设计参数及抗震性能。结果表明:牺牲-耗能型伸臂桁架的牺牲段和耗能段强度最优比为6∶4左右;将CO及BO模型中的伸臂桁架分别按照等刚等强原则替换成对应的牺牲-耗能型伸臂桁架后,结构中伸臂桁架的塑性耗能明显增加,剪力墙的塑性耗能明显减少,其他构件如连梁、梁的塑性耗能基本呈减少趋势,牺牲-耗能型伸臂桁架起到了保护结构中其他构件的作用。
        Outriggers are key lateral force resisting members in super-tall buildings. A frame-core tube-outrigger super-tall building is chosen as the research object. The super-tall building is firstly designed through adopting conventional outriggers and buckling-restrained-brace(BRB) outriggers. Two schemes are derived after the structural design, designated as a conventional outrigger structure(CO) and a BRB outrigger structure(BO). By conducting the nonlinear time-history analyses of the two structures at maximum considered earthquake(MCE) level, it is found that the outriggers in building BO maintain high strength, which in return increases the relative ratio of dissipated inelastic energy in other structural components. Consequently, the BRB outriggers in building BO dissipate less energy than the conventional outriggers in building CO. In this study, a novel sacrificial-energy dissipation(SED) outrigger is proposed to increase the energy dissipating capacity of outriggers. The main design parameters and aseismic performance of the proposed outrigger are analyzed through both experimental studies and numerical simulations. The results indicate that the optimum strength ratio between the sacrificial part and the energy dissipating part of the SED outrigger is about 6∶4. Through substituting the outriggers in both building CO and BO with the novel SED outriggers considering the principle of equal stiffness and equal strength, the new SED outrigger structures present more rational energy dissipation modes. The dissipated inelastic energy of outriggers increases significantly while that of the shear walls and other structural components decreases. Therefore, the novel SED outrigger is able to protect other structural components of super-tall buildings under MCEs.
引文
[1]丁洁民,吴宏磊,赵昕.我国高度250 m以上超高层建筑结构现状与分析进展[J].建筑结构学报,2014,35(3):1―7.Ding Jiemin,Wu Honglei,Zhao Xin.Current situation and discussion of structural design for super high-rise buildings above 250 m in China[J].Journal of Building Structures,2014,35(3):1―7.(in Chinese)
    [2]程骥.框架-核心筒-伸臂桁架结构体系受力性能研究[D].武汉:武汉理工大学,2012.Cheng Ji.Research on the mechanical properties of frame-core-outrigger structural system[D].Wuhan:Wuhan University of Technology,2012.(in Chinese)
    [3]吕西林,程明.超高层建筑结构体系的新发展[J].结构工程师,2008,24(2):99―106.LüXilin,Cheng Ming.Recent development of structural systems for super tall buildings[J].Structural Engineers,2008,24(2):99―106.(in Chinese)
    [4]邢丽丽,周颖.普通伸臂桁架与屈曲约束支撑型伸臂桁架最优布置方案分析[J].建筑结构学报,2015,36(12):1―10.Xing Lili,Zhou Ying.Optimization analysis of ordinary outrigger trusses and outrigger trusses with buckling restrained braces[J].Journal of Building Structures,2015,36(12):1―10.(in Chinese)
    [5]赵宪忠,王斌,陈以一,等.上海中心大厦伸臂桁架与巨柱和核心筒连接的静力性能试验研究[J].建筑结构学报,2013,34(2):20―28.Zhao Xianzhong,Wang Bin,Chen Yiyi,et al.Monotonic static tests on outrigger truss and its connection with mega column and core tube of the Shanghai Tower[J].Journal of Building Structures,2013,34(2):20―28.(in Chinese)
    [6]陈以一,王斌,赵宪忠,等.上海中心大厦伸臂桁架与巨柱和核心筒连接的抗震性能试验研究[J].建筑结构学报,2013,34(2):29―36.Chen Yiyi,Wang Bin,Zhao Xianzhong,et al.Hysteretic tests on outrigger truss and its connection with mega column and core tube of the Shanghai Tower[J].Journal of Building Structures,2013,34(2):29―36.(in Chinese)
    [7]聂建国,丁然,樊健生,等.武汉中心伸臂桁架-核心筒剪力墙节点抗震性能试验研究[J].建筑结构学报,2013,34(9):1―12.Nie Jianguo,Ding Ran,Fan Jiansheng,et al.Experimental research on seismic behavior of outrigger truss-wall joint in super high-rise building of Wuhan Center[J].Journal of Building Structures,2013,34(9):1―12.(in Chinese)
    [8]严鹏,王伟,陈以一.钢管混凝土柱与伸臂桁架连接节点试验研究[J].工程力学,2013,30(增刊):78―82.Yan Peng,Wang Wei,Chen Yiyi.Experimental study on concrete filled steel tube column to outrigger truss connection[J].Engineering Mechanics,2013,30(Suppl):78―82.(in Chinese)
    [9]杨青顺.耗能伸臂桁架试验及设计方法研究[D].北京:清华大学,2017.Yang Qingshun.Experimental and design method study of energy dissipating outriggers[D].Beijing:Tsinghua University,2017.(in Chinese)
    [10]卢啸.超高巨柱-核心筒-伸臂结构地震灾变及抗震性能研究[D].北京:清华大学,2013.Lu Xiao.Study on the collapse simulation and seismic performance of super tall mega column-core tube-outrigger buildings[D].Beijing:Tsinghua University,2013.(in Chinese)
    [11]陆新征,卢啸,李梦珂,等.上海中心大厦结构抗震分析简化模型及地震耗能分析[J].建筑结构学报,2013,34(7):1―10.Lu Xinzheng,Lu Xiao,Li Mengke,et al.Study on simplified modeling and energy dissipation distribution of the Shanghai Tower[J].Journal of Building Structures,2013,34(7):1―10.(in Chinese)
    [12]Fan H,Li Q S,Tuan A Y,et al.Seismic analysis of the world’s tallest building[J].Journal of Constructional Steel Research,2009,65(5):1206―1215.
    [13]Li Q S,Wu J R.Correlation of dynamic characteristics of a super-tall building from full scale measurements and numerical analysis with various finite element models[J].Earthquake Engineering and Structural Dynamics,2004,33(14):1311―1336.
    [14]Jiang H J,Lu X L,Liu X J,et al.Performance-based seismic design principles and structural analysis of Shanghai Tower[J].Advances in Structural Engineering,2014,17(4):513―528.
    [15]Moehle J.Seismic design of reinforced concrete buildings[M].New York:McGraw-Hill Education,2015:755―758.
    [16]JGJ 3-2010,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.JGJ 3-2010,Technical specification for concrete structures of tall building[S].Beijing:China Architecture&Building Press,2010.(in Chinese)
    [17]GB 50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.GB 50011-2010,Code for seismic design of buildings[S].Beijing:China Architecture&Building Press,2010.(in Chinese)
    [18]陆文忠,吕西林.武汉人信汇高位裙房双塔超限高层抗震分析和性能化设计[J].建筑结构,2016,46(6):12―19.Lu Wenzhong,LüXilin.Seismic analysis and performance-based design of a tall twin-tower beyond code limits with high-rise podium for Wuhan Ren Xin Hui[J].Building Structure,2016,46(6):12―19.(in Chinese)
    [19]Poon D,Hsiao L,Zhu Y,et al.Non-linear time history analysis for the performance based design of Shanghai Tower[C]//Structures Congress:Las Vegas.Reston.Virginia:ASCE,2011:541―551.
    [20]PEER Center.PEER ground motion database[DB/OL].http://ngawest2.berkeley.edu/,2018-06-20.
    [21]GB 50017-2003,钢结构设计规范[S].北京:中国计划出版社,2003.GB 50017-2003,Code for design of steel structures[S].Beijing:China Planning Press,2003.(in Chinese)
    [22]FEMA 356.Prestandard and commentary for the seismic rehabilitation of buildings[R].Washington D C:Federal Emergency Management Agency,2000.
    [23]杨青顺,甄伟,解琳琳,等.耗能伸臂桁架抗震性能试验研究[J].工程力学,2016,33(10):76―85.Yang Qingshun,Zhen Wei,Xie Linlin,et al.Experimental study on the seismic performance of energy dissipation outriggers[J].Engineering Mechanics,2016,33(10):76―85.(in Chinese)
    [24]赖寒,何志军,丁洁民.上海中心大厦考虑施工过程的竖向变形及差异分析与研究[J].结构工程师,2011,27(6):14―21.Lai Han,He Zhijun,Ding Jiemin.Analysis and research of vertical deformation difference of Shanghai Tower considering construction process[J].Structural Engineers,2011,27(6):14―21.(in Chinese)
    [25]董志君,滕军,郭伟亮.深圳京基金融中心的施工过程力学性能分析[J].建筑结构学报,2010(增刊1):409―412.Dong Zhijun,Teng Jun,Guo Weiliang.Staged construction analysis and application of mechanical performance on Jingji Commercial Centre[J].Journal of Building Structures,2010(Suppl1):409―412.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700