用户名: 密码: 验证码:
相对湿度作用下的石膏矿护顶层突变破坏机制分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of catastrophic failure mechanism of roof bed in gypsum mines induced by relative humidity
  • 作者:夏开宗 ; 陈从新 ; 宋许根 ; 刘秀敏 ; 周意超
  • 英文作者:XIA Kai-zong;CHEN Cong-xin;SONG Xu-gen;LIU Xiu-min;ZHOU Yi-chao;State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan;University of Chinese Academy of Sciences;
  • 关键词:石膏矿 ; 护顶层 ; 尖点突变模型 ; 相对湿度 ; 控制参数
  • 英文关键词:gypsum mine;;roof bed;;a cusp catastrophe model;;relative humidity;;control parameter
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室;中国科学院大学;
  • 出版日期:2017-12-05 10:31
  • 出版单位:岩土力学
  • 年:2018
  • 期:v.39;No.285
  • 基金:国家自然科学基金(No.51274188)~~
  • 语种:中文;
  • 页:YTLX201802024
  • 页数:9
  • CN:02
  • ISSN:42-1199/O3
  • 分类号:198-206
摘要
依据室内试验所得的石膏岩的基本力学性质随着大气中相对湿度变化的规律,并结合石膏矿采空区的破坏特征,将护顶层简化为铅直方向受均布荷载q作用的三铰拱分析模型,建立了相对湿度作用下的石膏矿采空区护顶层的尖点突变模型,研究了相对湿度作用下护顶层突发破坏的失稳机制。试验结果表明:石膏岩的力学性质在采空区中环境湿度的作用下,其强度和变形参数会大大降低。分析和工程计算结果表明:随着采空区中环境湿度的增加,支撑体系越不稳定,越容易跨越分叉集而发生突发失稳破坏;相空间的控制参数a随着采空区中环境湿度的增加,其代数值是逐渐增大的(绝对值减小,由负值向0变化),而控制参数b逐渐增大,系统突发失稳控制参数(a,b)的变化路径为向东北方向变化,该路径是系统较为容易发生突发失稳的路径。
        Mechanical parameters of gypsum rock are influenced by the relative humidity in the mine atmosphere. Based on failure characteristics of the roof bed in gypsum mines, we proposed a simplified three-hinged arch analysis model under the uniform load q. Then a cusp catastrophe model was established to investigate instability mechanisms of the roof bed system influenced by the relative humidity. Experimental results show that mechanical parameters of gypsum rock are greatly reduced due to the influence of relative humidity. Analysis and calculation results show that the increase of the relative humidity around the roof bed leads to the instability of support system and the appearance bifurcation set. Therefore, it is more likely that the roof bed undergoes a catastrophic event. The algebraic value of control parameter(a) of the three-dimensional space gradually increases with the increase of relative humidity in the mine atmosphere(i.e., absolute value decreases and changes from negative to zero), and the control parameter(b) gradually increases as well. The path of the control parameter(a, b) of system instability shows the northeast direction, which is the probable path for the system to lose stability.
引文
[1]王官宝.石膏矿冒顶引发冲击地压机理及防治措施研究[D].武汉:武汉理工大学,2006.WANG Guan-bao.Study on rock burst induced by roof falling and its control methods in gypsum mine[D].Wuhan:Wuhan University of Technology,2006.
    [2]AUVRAY C,HOMAND F,SORGI C.The aging of gypsum in underground mines[J].Engineering Geology,2004,74(3):183-196.
    [3]AUVRAY C,HOMAND F,HOXHA D.The influence of relative humidity on the rate of convergence in an underground gypsum mine[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1454-1468.
    [4]AL HEIB M M,DIDIER C,MASROURI F.Improving short-and long-term stability of underground gypsum mine using partial and total backfill[J].Rock Mechanics and Rock Engineering,2010,43(4):447-461.
    [5]CASTELLANZA R,NOVA R,ORLANDI G M.Evaluation and remediation of an abandoned gypsum mine[J].Journal of Geotechnical and Geoenvironmental Engineering,2010,136(4):629-639.
    [6]BERTOLINI L,CARSANA M,SPADA M.Filling of a flooded gypsum mine with a flowable soil-cement mix[J].Journal of Materials in Civil Engineering,2010,22(6):628-636.
    [7]夏开宗,陈从新,刘秀敏,等.石膏矿矿柱-护顶层支撑体系的流变力学模型分析[J].岩土力学,2017,38(10):2923-2930.XIA Kai-zong,CHEN Cong-xin,LIU Xiu-min,et al.Rheological mechanical model of pillar-protective roof supporting system in gypsum mines[J].Rock and Soil Mechanics,2017,38(10):2923-2930.
    [8]夏开宗,陈从新,刘秀敏,等.基于突变理论的石膏矿矿柱-护顶层支撑体系的破坏分析[J].岩石力学与工程学报,2016,35(增刊2):3837-3845.XIA Kai-zong,CHEN Cong-xin,LIU Xiu-min,et al.Study of the failure of pillar-roof system in gypsum mines based on catastrophe theory[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(Supp.2):3837-3845.
    [9]周意超,陈从新,刘秀敏,等.荆门石膏矿岩遇水软化力学特性试验研究[J].岩土力学,2017,38(10):2847-2854,2864.ZHOU Yi-chao,CHEN Cong-xin,LIU Xiu-min,et al.Experimental study on mechanical properties of watersoftening gypsum rock in Jingmen[J].Rock and Soil Mechanics,2017,38(10):2847-2854,2864.
    [10]YILMAZ I.Influence of water content on the strength and deformability of gypsum[J].International Journal of Rock Mechanics and Mining Sciences,2010,47(2):342-347.
    [11]DENG J H,HUANG X C,LI Y J.Experimental research on the mechanical properties of gypsum breccia with different water content[J].Journal of Shanghai Jiaotong University(Science),2010,15(2):250-256.
    [12]WANG J A,SHANG X C,MA H T.Investigation of catastrophic ground collapse in Xingtai gypsum mines in China[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1480-1499.
    [13]THOM R.Stabilitéstructurelle et morphogénése[M].New York:[s.n.],1972.
    [14]CUBITT J M,SHAW B.The geological implications of steady-state mechanisms in catastrophe theory[J].Journal of the International Association for Mathematical Geology,1976,8(6):657-662.
    [15]HENLEY S.Catastrophe theory models in geology[J].Journal of the International Association for Mathematical Geology,1976,8(6):649-655.
    [16]SAUNDERS P T.An introduction to catastrophe theory[M].Cambridge:Cambridge University Press,1980.
    [17]QIN S,WANG S,JIAO J J.A cusp catastrophe model of instability of slip-buckling slope[J].Rock Mechanics and Rock Engineering,2001,34(2):119-134.
    [18]QIN S Q,JIAO J J,WANG S J,et al.A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of its evolutionary process[J].International Journal of Solids and Structures,2001,38(44-45):8093-8109.
    [19]QIN S Q,JIAO J J,LI Z G.Nonlinear evolutionary mechanisms of instability of plane-shear slope:Catastrophe,bifurcation,chaos and physical prediction[J].Rock Mechanics and Rock Engineering,2006,39(1):59-76.
    [20]QIN S Q,JIAO J J,TANG C A,et al.Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal-pillar-and-roof system[J].International Journal of Solids and Structures,2006,43(25-26):7407-7423.
    [21]陈庆发,古德生,周科平,等.对称协同开采人工矿柱失稳的突变理论分析[J].中南大学学报(自然科学版),2012,43(6):2338-2342.CHEN Qing-fa,GU De-sheng,ZHOU Ke-ping,et al.Analysis of catastrophe theory for artificial pillar instability in symmetric synergistic mining[J].Journal of Central South University(Science and Technology),2012,43(6):2338-2342.
    [22]PAN Yue,LI Ai-wu,QI Yun-song.Fold catastrophe model of dynamic pillar failure in asymmetric mining[J].Mining Science and Technology,2009,19(1):49-57.
    [23]赵延林,吴启红,王卫军,等.基于突变理论的采空区重叠顶板稳定性强度折减法及应用[J].岩石力学与工程学报,2010,29(7):1424-1434.ZHAO Yan-lin,WU Qi-hong,WANG Wei-jun,et al.Strength reduction method to study stability of gob overlapping roof based on catastrophe theory[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(7):1424-1434.
    [24]LIU C L,TAN Z X,DENG K Z,et al.Synergistic instability of coal pillar and roof system and filling method based on plate model[J].International Journal of Mining Science and Technology,2013,23(1):145-149.
    [25]HU J H,ZHOU K P,LI X B,et al.Numerical analysis of application for induction caving roof[J].Journal of Central South University of Technology,2005,12(1):146-149.
    [26]龙辉,秦四清,万志清.降雨触发滑坡的尖点突变模型[J].岩石力学与工程学报,2002,21(4):502-508.LONG Hui,QIN Si-qing,WAN Zhi-qing.Catastrophe analysis of rainfall-induced landslides[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(4):502-508.
    [27]YILMAZ I,YUKSEK G.Prediction of the strength and elasticity modulus of gypsum using multiple regression,ANN,and ANFIS models[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(4):803-810.
    [28]廖文景.石膏矿采空区积水对矿柱稳定性的影响分析[J].采矿技术,2009,9(3):52-58.LIAO Wen-jing.Effect of water in mined-out area on the ore pillar stability in the gypsum mine[J].Mining Technology,2009,9(3):52-58.
    [29]陈从新,周意超.石膏岩物理力学性质试验报告[R].武汉:中国科学院武汉岩土力学研究所,2014.CHEN Cong-xin,ZHOU Yi-chao.Report on physical mechanics experiment of gypsum rock[R].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2014.
    [30]肖国喜.石膏类矿床采空区失稳机理及防治措施研究[D].赣州:江西理工大学,2015.XIAO Guo-xi.Gypsum type deposit goaf instability mechanism and prevention and cure measure research[D].Ganzhou:Jiangxi University of Science and Technology,2015.
    [31]陆广,罗周全,刘晓明,等.露天转地下开采隔层厚度安全分析[J].采矿与安全工程学报,2011,28(1):132-137.LU Guang,LUO Zhou-quan,LIU Xiao-ming,et al.Safety analysis of interlayer thickness from open pit to underground mining[J].Journal of Mining&Safety Engineering,2011,28(1):132-137.
    [32]张敏思,朱万成,侯召松,等.空区顶板安全厚度和临界跨度确定的数值模拟[J].采矿与安全工程学报,2012,29(4):543-548.ZHANG Min-si,ZHU Wan-cheng,HOU Zhao-song,et al.Numerical simulation for determining the safe roof thickness and critical goaf span[J].Journal of Mining&Safety Engineering,2012,29(4):543-548.
    [33]潘岳,王志强,张勇.突变理论在岩体系统动力失稳中的应用[M].北京:科学出版社,2008.PAN Yue,WANG Zhi-qiang,ZHANG Yong.Application of catastrophe theory to dynamic instability of rock mass system[M].Beijing:Science Press,2008.
    [34]王志强,潘岳.顶板-锚拉支架系统稳定性的突变理论分析[J].金属矿山,2003,(9):1―3.WANG Zhi-qiang,PAN Yue.Analysis of the stability of roof-truss system by catastrophic theory[J].Metal Mine,2003,(9):1-3.
    [35]刘夏临.基于突变理论的采空区稳定性分析与预测[D].武汉:武汉科技大学,2014.LIU Xia-lin.Analysis and prediction of excavation stability with catastrophe theory[D].Wuhan:Wuhan University of Science and Technology,2014.
    [36]夏开宗,刘秀敏,陈从新,等.考虑突变理论的顺层岩质边坡失稳研究[J].岩土力学,2015,36(2):477-486.XIA Kai-zong,LIU Xiu-min,CHEN Cong-xin,et al.Analysis of mechanism of bedding rock slope instability with catastrophe theory[J].Rock and Soil Mechanics,2015,36(2):477―486.
    [37]祝云华,刘新荣,黄明,等.深埋隧道开挖围岩失稳突变模型研究[J].岩土力学,2009,30(3):805-809.ZHU Yun-hua,LIU Xin-rong,HUANG Ming,et al.Surrounding rock instability based on catastrophe model of deep-buried tunnel excavation[J].Rock and Soil Mechanics,2009,30(3):805-809.
    [38]陈从新,黄平路.荆门市荆花石膏矿采空区治理可行性评价[R].武汉:中国科学院武汉岩土力学研究所,2012.CHEN Cong-xin,HUANG Ping-lu.Stability evaluation and treatment on mined-out area of Jinghua Gypsum Mine golf in Jingmen city[R].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700