用户名: 密码: 验证码:
低温制备高比例{001}晶面择优的锐钛矿薄膜
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Low temperature preparation of anatase thin film with high proportion of {001} facets preferred
  • 作者:肖帆 ; 姜珍兰 ; 陈劲宇 ; 宗晨 ; 刘升沛 ; 项军
  • 英文作者:XIAO Fan;JIANG Zhenlan;CHEN Jinyu;ZONG Chen;LIU Shengpei;XIANG Jun;College of Mechanical Engineering, Zhejiang University of Technology;College of Materials Science and Engineering, Zhejiang University of Technology;
  • 关键词:低温 ; 择优取向 ; 锐钛矿
  • 英文关键词:low temperature;;preferential orientation;;anatase
  • 中文刊名:ZJGD
  • 英文刊名:Journal of Zhejiang University of Technology
  • 机构:浙江工业大学机械工程学院;浙江工业大学材料科学与工程学院;
  • 出版日期:2019-03-20
  • 出版单位:浙江工业大学学报
  • 年:2019
  • 期:v.47;No.198
  • 基金:浙江省自然科学基金资助项目(LY15E020010)
  • 语种:中文;
  • 页:ZJGD201902010
  • 页数:5
  • CN:02
  • ISSN:33-1193/T
  • 分类号:56-60
摘要
通过低温水热法,在经退火处理的钛片上制备高比例{001}晶面择优的锐钛矿型TiO_2薄膜。采用扫描电镜(SEM)和X射线衍射仪(XRD),研究分析不同水热条件对二氧化钛薄膜生长的影响。结果表明:在40~80℃升高反应温度,能促进晶体取向附着,有利于纳米晶在[001]方向上择优生长;适当延长反应时间,能有效促进纳米二氧化钛薄膜的结晶度和(001)晶面的择优。在钛基底上原位生长具有高比例(001)晶面择优的锐钛矿型二氧化钛薄膜具有两种不同的生长机制,[001]晶向的择优生长及(001)晶面的择优曝露,可以通过控制反应温度和反应时间等实验参数实现对二氧化钛纳米薄膜的控制。
        The anatase thin film with high proportion {001} facets preferred was prepared by low temperature hydrothermal method. The effects of different reaction conditions on the growth of anatase films were studied by scanning electron microscopy(SEM) and X-ray diffractometer(XRD). It was concluded that, increasing the reaction temperature within 40-80 ℃ range could promote the oriented attachment of the crystals, and resulted in preferable growth along [001] direction; Appropriate extension of reaction time could improve the deposition of the crystalline TiO_2, and enhanced the preferential orientation of {001} facets. It could be explained by two different growth mechanisms, the preferable growth along [001] direction and the preferential exposure of {001} facets. The controllable deposition of TiO_2 films could be achieved by adjusting the reaction temperature and reaction time.
引文
[1] YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature,2008, 453:638-641.
    [2] 肖帆,柳星竹,江光强,等.钛表面原位自组装TiO2空心球及生物活性研究[J].浙江工业大学学报,2016,44(5):580-583.
    [3] 许炉生,谢银波,陈金媛.水浴法后处理制备锐钛矿纳米管的研究[J].浙江工业大学学报,2014,42(4),431-434.
    [4] 肖帆,倪爱珍,柳星竹,等.钛基体表面纳米二氧化钛薄膜生长及控制[J].浙江工业大学学报,2015,43(3),301-310.
    [5] SELLONI A. Crystal growth: anatase shows its reactive side[J]. Nature materials, 2008, 7(8): 613.
    [6] VITTADINI A, SELLONI A, ROTZINGER F P, et al. Structure and energetics of water adsorbed at anatase (101) and (001) surfaces[J]. Physical review letters, 1998, 81(14): 2954-2957.
    [7] LAZZERI M, VITTADINI A, SELLONI A. Erratum: structure and energetics of stoichiometric TiO2, anatase surfaces [Phys. Rev. B 63, 155409 (2001)][J]. Condensed matter and materials physics, 2002, 65(11): 11-15.
    [8] YANG H G, LIU G, QIAO S Z, et al. Solvothermal synthesis and photoreactivity of anatase tio2 nanosheets with dominant {001} facets[J]. Journal of the American chemical society,2009, 131(11): 4078-4083.
    [9] GONG X Q, SELLONI A. Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface[J]. Journal of physical chemistry B, 2005, 109(42): 19560-19562.
    [10] LIU B, AYDIL E S. Anatase TiO2 films with reactive {001} facets on transparent conductive substrate[J]. Chemical communications, 2011, 47(33): 9507-9509.
    [11] HAN X, KUANG Q, JIN M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties[J]. Journal of the American chemical society, 2009, 131(9): 3152-3153.
    [12] VARGHESE O K, PAULOSE M, GRIMES C A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells[J]. Nature nanotechnology, 2009, 4(9): 592-597.
    [13] LI Y, SASAKI T, SHIMIZU Y, et al. Hexagonal-close-packed, hierarchical amorphous TiO2 nano column arrays: transferability, enhanced photocatalytic activity, and super amphiphilicity without UV irradiation[J]. Journal of the American chemical society, 2008, 130(44): 14755-14762.
    [14] DEKI S, AOI Y, ASAOKA Y, et al. Monitoring the growth of titanium oxide thin films by the liquid-phase deposition method with a quartz crystal microbalance[J]. Journal of materials chemistry, 1997, 7(5): 733-736.
    [15] PENN R L, BANFIELD J F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2[J]. American mineralogist, 1998, 83(9/10): 1077-1082.
    [16] NOWAK B. Occurrence behavior and effects of nanoparticles in the environment[J]. Pakistan journal of pharmaceutical sciences, 2007, 27(1): 193-202.
    [17] HUANG F, ZHANG H Z A, BANFIELD J F. The role of oriented attachment crystal growth in hydrothermal coarsening of nanocrystalline ZnS[J]. Journal of physical chemistry B, 2003, 107(38): 10470-10475.
    [18] JUN Y W, CASULA M F, SIM J H, et al. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals[J]. Journal of the American chemical society, 2003, 125(51): 15981-15985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700