用户名: 密码: 验证码:
基于示踪气体法的覆岩“竖三带”测定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:“Vertical Three Zones” Determination of Overburden Based on Tracer Gas Method
  • 作者:邹永洺
  • 英文作者:ZOU Yongming;China Coal Technology and Engineering Group Shenyang Research Institute;State Key Laboratory of Coal Safety Technology;
  • 关键词:示踪技术 ; SF_6 ; 竖三带 ; 瓦斯流动 ; 高位钻孔 ; 瓦斯治理
  • 英文关键词:tracer technique;;SF_6;;vertical three zones;;gas flow;;high level boreholes;;gas control
  • 中文刊名:MKAQ
  • 英文刊名:Safety in Coal Mines
  • 机构:煤科集团沈阳研究院有限公司;煤矿安全技术国家重点实验室;
  • 出版日期:2019-05-20
  • 出版单位:煤矿安全
  • 年:2019
  • 期:v.50;No.539
  • 基金:“十三五”国家科技重大专项资助项目(2016ZX05067004-003);; 中国煤炭科工集团有限公司科技创新基金资助项目(2018QN010)
  • 语种:中文;
  • 页:MKAQ201905002
  • 页数:4
  • CN:05
  • ISSN:21-1232/TD
  • 分类号:13-16
摘要
根据煤矿井下覆岩"竖三带"测定技术现状,提出利用示踪气体法测定覆岩"竖三带"技术,利用SF_6作为示踪气体;分析了高位钻孔在煤层开采过程中的破坏过程和利用SF_6测定覆岩"竖三带"的技术原理,设计了多钻孔对比测定"竖三带"的试验方案。现场试验结果表明,通过1~#~4~#钻孔测定断裂带上下边界基本相差不大,15203工作面的覆岩断裂带范围为35.8~71.2 m,断裂带发育完全的层位为54.1~58.5 m,弯曲下沉带范围大于71.2 m岩层,垮落带范围为小于35.8m岩层,断裂带的准确测定为高位钻孔设计提供了指导,减少钻孔工程量,提高煤矿生产效率。
        According to the present situation of the"vertical three zones"determination technology of the overburden strata in coal mine, the tracer gas method was proposed to determine the "vertical three zones", and the SF_6 acted as the tracer gas; the failure process of the high level boreholes in the process of coal seam mining was analyzed and the technical principle of using the SF_6 to determine the"vertical three zones"of the overburden was determined, and the experimental scheme of the"vertical three zones"was designed with multiple boreholes comparison. The field tests showed that the upper and lower boundaries of the fractured zone determined by the 1~# to 4~# boreholes were almost the same, the fractured zone range of the 15203 working face overburden was 35.8 m to 71.2 m, the fully developed strata of the fracture zone was 54.1 m to 58.5 m, the curve subsidence zone range was more than 71.2 m, and the caving zone range was less than 35.8 m. The accurate determination of fracture zone can provide guidance for the high level boreholes design, reduce drilling works and improve the coal mine production efficiency.
引文
[1]钱鸣高,缪协兴.许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [2]杜旭.多煤层赋存条件下采场覆岩“竖三带”分布规律研究与应用[D].北京:煤炭科学研究总院,2018.
    [3]黄学满.煤矿采场“竖三带”的确定方法及应用[J].煤炭科学技术,2013,41(8):48-50.
    [4]马亚杰,武强,章之燕,等.煤层开采顶板导水裂隙带高度预测研究[J].煤炭科学技术,2008,36(5):59.
    [5]李树刚,王琳华,林海飞,等.采场覆岩“三带”演化特性的相似模拟实验及分析[J].矿业安全与环保,2013,40(3):17-21.
    [6]熊晓英,杜广森,李俊斌.注水实验法探测导水裂隙带高度[J].煤炭技术,2004,23(2):77-79.
    [7]郝圣艾,张作华,赵红梅,等.利用SF6定性检测采空区地表漏风[J].煤矿安全,2007,38(8):26-28.
    [8]陈金玉,马丕梁,孔一凡,等.SF6气体示踪法测定钻孔瓦斯抽放有效半径[J].煤矿安全,2008,39(9):23.
    [9]李迎春,杨胜强,张帅.基于示踪气体采空区漏风通道定性识别[J].煤矿安全,2013,44(1):185-188.
    [10]张福成.SF6示踪气体测定漏风技术在神东矿区的应用[J].煤炭工程,2006(6):94-96.
    [11]刘国忠,李国华,王正辉,等.SF6示踪气体连续释放法在采空区漏风检测中的应用[J].煤矿安全,2011,42(9):114-117.
    [12]何俊忠,杨宏伟.SF6示踪气体在采空区漏风量测定及注氮优化中的应用[J].煤矿安全,2012,43(增刊):119-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700