用户名: 密码: 验证码:
沙区光伏电场的风沙流输移特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transport of Wind-Drift Sand in Photovoltaic Electric Field in Sand Area
  • 作者:陈曦 ; 高永 ; 翟波 ; 刘湘杰 ; 程波
  • 英文作者:CHEN Xi;GAO Yong;ZHAI Bo;LIU Xiang-jie;CHENG Bo;College of Desertification Control,Inner Mongolia Agricultural University;
  • 关键词:光伏阵列 ; 空间位置 ; 输沙量 ; 风沙流结构特征值 ; 内蒙古
  • 英文关键词:photovoltaic array;;spatial position;;transport rate;;characteristic value of wind-sand flow structure;;Inner Mongolia
  • 中文刊名:GHQJ
  • 英文刊名:Arid Zone Research
  • 机构:内蒙古农业大学沙漠治理学院;
  • 出版日期:2019-03-25 10:40
  • 出版单位:干旱区研究
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金项目“沙区光伏发电场与其环境的互馈机制”(41461001)资助
  • 语种:中文;
  • 页:GHQJ201903020
  • 页数:7
  • CN:03
  • ISSN:65-1095/X
  • 分类号:159-165
摘要
以乌海市晟辉能源技术公司沙区太阳能光伏电场为研究对象,对光伏矩阵内光伏板的前沿、后沿及光伏阵列行道处风沙输移情况进行观测,研究沙区光伏电站的风沙流输移规律。研究表明:(1)各观测点输沙量均随着高度的增加呈降低趋势,光伏板前沿、后沿、行道处各观测点输沙量随高度增加的最佳拟合方程均为多项式函数,且R~2均大于0. 95,拟合结果可信。(2)光伏板前沿、后沿处风沙流结构特征值大于1,风沙流呈非饱和状态,地表表现为风蚀。电场矩阵行道处风沙流结构特征值均小于1,风沙流为饱和状态,地表表现为堆积。由于光伏板对风沙流的导向作用,导致光伏板下方形成气流加速区,光伏板下方出现掏蚀现象,因此光伏板下方为场区内部风沙防治的重点区域。(3)光伏矩阵内部各观测点的输沙量均低于旷野处,且随着深入电站内部输沙量逐渐降低。沙区光伏电站控制沙害的关键位置为电站迎风边缘处。
        A photovoltaic power station in sand area was taken as the research object to study the transport of wind-drift sand at the front and back eaves of photovoltaic plates and the photovoltaic array roadways so as to figure out the migration of wind-drift sand at different spatial positions of the photovoltaic electric field in sand area. The results showed that:(1) The sand transport rate at the array was decreased with the increase of height. The optimal fitting equations of sand transport rate at the observation points along the eaves and back eaves of the electric plate and the array roadways were all the polynomial functions with the increase of height. The values of R~2 were all higher than 0. 95,and the fitted results were reliable;(2) The eigenvalues of wind-drift sand flow structure at the front and back eaves of the electric plate were higher than 1,and the wind-drift sand flow was unsaturated. The eigenvalues of wind-drift sand flow structure at the array roadways were lower than 1,and the wind-drift sand flow was saturated. The electric plate played a guiding role for wind-drift sand transport. As an airflow acceleration zone formed at the bottom of the electric plate,a wind erosion occurred at the bottom of electric plate. Therefore,the bottom of electric plate should be the key area of wind erosion prevention;(3) The sand transport rate at all the observation points in the arrays was lower than that in open field. Therefore,the windward marginal zone of the photovoltaic power station should be the key of preventing wind erosion.
引文
[1]工信部电子信息司.构建智能光伏产业生态体系[N].中国电子报,2018-05-04(001).[Ministry of Industry and Information Technology of the People’s Republic of China.Constructing the Intelligent Photovoltaic Industry Ecosystem[N].China Electronics News,2018-05-04(001).]
    [2]张东.光伏产业发展趋势及现状分析[J].轻工科技,2018,34(3):41-42,45.[Zhang Dong.Analysis of the development trend and status of photovoltaic industry[J].Light Industry Science and Technology,2018,34(3):41-42,45.]
    [3]郭雨薇,李友杰.光伏扶贫的战略意义及推广措施[J].湖北农业科学,2016,55(16):4 327-4 329.[Guo Yuwei,Li Youjie.Strategic significance and popularization measures of poverty alleviation by photovoltaic energy[J].Hubei Agricultural Sciences,2016,55(16):4 327-4 329.]
    [4]彭金桂.关于我国光伏发电的土地使用现状和应对策略的几点思考[J].低碳世界,2017(22):49-50.[Peng Jingui.Thoughts on the current situation of land use and countermeasures of photovoltaic power generation in China[J].Low Carbon World,2017(22):49-50.]
    [5]吴汪洋,张登山,田丽慧,等.高寒沙地植物的沙堆形态特征及其成因分析[J].干旱区研究,2018,35(3):713-721.[Wu Wangyang,Zhang Dengshan,Tian Lihui,et al.Morphologic features and forming causes of plant sandpiles in alpine sand land[J].Arid Zone Research,2018,35(3):713-721.]
    [6]杨丽萍,代海燕,陈素华,等.气候变化对科尔沁沙地木本植物物候期的影响[J].干旱区研究,2017,34(3):518-523.[Yang Liping,Dai Haiyan,Chen Suhua,et al.Effects of climate change on phenophase of woody plants in the Horqin Sandy Land[J].Arid Zone Research,2017,34(3):518-523.]
    [7]陈曦,高永,娜仁格日勒,等.风场及光伏电场配置对阵列风沙结构影响的模拟分析[J].北京林业大学学报,2017,39(8):68-76.[Chen Xi,Gao Yong,Na Rengerile,et al.The simulation analysis of effect of allocation with wind field and photovoltaic DCfield on aeolian-sand structure[J].Journal of Beijing Forestry University,2017,39(8):68-76.]
    [8]袁方,张振师,卜崇峰,等.毛乌素沙地光伏电站项目区风速流场及风蚀防治措施[J].中国沙漠,2016,36(2):287-294.[Yuan Fang,Zhang Zhenshi,Bu Chongfeng,et al.Wind speed flow field and wind erosion control measures photovoltaic power plant project area in Mu Us Sandy land[J].Journal of Desert Research,2016,36(2):287-294.]
    [9]周志强,黎明.沙漠前沿不同植被恢复模式对风的影响[J].东北林业大学学报,2011,39(3):56-60.[Zhou Zhiqiang,Li Ming.Effect of different vegetation restoration modes on wind at the edge of desert[J].Journal of Northeast Forestry University,2011,39(3):56-60.]
    [10]高永,党晓宏,虞毅,等.乌兰布和沙漠东南缘白沙蒿(Artemisia sphaerocphala)灌丛沙堆形态特征与固沙能力[J].中国沙漠,2015,35(1):1-7.[Gao Yong,Dang Xiaohong,Yu Yi,et al.Nabkha morphological characteristics and sand fixing capacity of Artemisia sphaerocphala in the southeastern edge of the Ulan Buh Desert[J].Journal of Desert Research,2015,35(1):1-7.]
    [11]吴正.风沙地貌学[M].北京:科学出版社,1987:38-39.[Wu Zheng.Aeolian Geomorphology[M].Beijing:Science Press,1987:38-39.]
    [12]Goovaerts P.Geostatistical modelling of uncertainty in soil science[J].Geoderma,2001,103(1):3-26.
    [13]张正偲,董治宝,赵爱国,等.输沙量与输沙势的关系[J].中国沙漠,2011,31(4):824-827.[Zhang Zhengcai,Dong Zhibao,Zhao Aiguo,et al.Relationship between sand transport and sand drift potential[J].Journal of Desert Research,2011,31(4):824-827.]
    [14]董治宝,慕青松,王洪涛.风沙流中风速廓线的数值模拟与实验验证[J].气象学报,2008,66(2):158-166.[Dong Zhibao,Mu Qingsong,Wang Hongtao.Numerical and experimental simulation of the wind velocity profile with a blowing sand cloud[J].Acta Meteorologica Sinica,2008,66(2):158-166.]
    [15]程建军,智凌岩,薛春晓,等.铁路沿线下导风板对风沙流场的控制规律[J].中国铁道科学,2017,38(6):16-23.[Cheng Jianjun,Zhi Lingyan,Xue Chunxiao,et al.Control law of lower air deflector for sand flow field along railway[J].China Railway Science,2017,38(6):16-23.]
    [16]王凯.具有导风板的自然通风逆流湿式冷却塔进风阻力研究及性能优化[D].济南:山东大学,2009.[Wang Kai.Research on Flow Resistance of Inlet Air and Performance Optimization of Natural Draft Counter Flow Wet Cooling Tower with Air Deflectors[D].Jinan:Shangdong University,2009.]
    [17]赵鹏宇.光伏光伏板对地表土壤颗粒及小气候的影响[D].呼和浩特:内蒙古农业大学,2016.[Zhao Pengyu.Research on the Local Micro Environment Impact of Photovoltaic Power Station on the Northeast Ulan Buh Desert[D].Hohhot:Inner Mongolia Agricultural University,2016.]
    [18]袁方.西北风沙区光伏电站施工迹地工程措施的风蚀防治效益及其机理研究[D].杨凌:西北农林科技大学,2016.[Yuan Fang.Study of the Effectiveness and Mechanism of Wind Erosion Control of Engineering Measures of Photovoltaic Constructing Land in Northwest Sandstorm Area[D].Yangling:Northwest A&F University,2016.]
    [19]郭彩贇,韩致文,李爱敏,等.库布齐沙漠110 MW光伏基地次生风沙危害的动力学机制[J].中国沙漠,2018,38(2):225-232.[Guo Caiyun,Han Zhiwen,Li Aimin,et al.Dynamic mechanism research on the secondary blown sand disaster in the 110 MWphotovoltaic array of the Hobq Desert[J].Journal of Desert Research,2018,38(2):225-232.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700