用户名: 密码: 验证码:
籼稻和粳稻品种糙米矿质营养对开放式空气CO_2浓度升高的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of mineral nutrients in brown rice of indica and japonica cultivars( Oryza sativa L.) to elevated atmospheric [CO_2]
  • 作者:蒋倩 ; 朱春梧 ; 刘钢 ; 徐习 ; 陈晨 ; 张继双 ; 朱建国
  • 英文作者:JIANG Qian;ZHU Chun-wu;LIU Gang;XU Xi;CHEN Chen;ZHANG Ji-shuang;ZHU Jian-guo;State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:FACE ; 籼稻 ; 粳稻 ; 稻米品质 ; 矿质元素
  • 英文关键词:free-air CO2 enrichment(FACE);;indica;;japonica;;rice quality;;mineral element
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室;中国科学院大学;
  • 出版日期:2019-01-16 14:04
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.310
  • 基金:基金委国际(地区)合作与交流项目(31261140364);; 科技部国际合作与交流项目(2010DFA22770)资助
  • 语种:中文;
  • 页:STXZ201905012
  • 页数:7
  • CN:05
  • ISSN:21-1148/Q
  • 分类号:99-105
摘要
基于FACE(free-air CO_2enrichment)试验平台,以籼稻IIY084与粳稻WYJ23为试验对象,连续两年(2013、2014)研究糙米产量和矿质元素(Fe、Mn、Cu、Zn、Ni、Se)含量对CO_2浓度升高的响应。结果表明,CO_2浓度升高条件下,IIY084与WYJ23籽粒和糙米产量增加,其中,糙米两年平均增产34.3%和16.3%。CO_2浓度升高连续两年降低IIY084糙米中Fe、Mn、Cu、Zn、Ni、Se含量,其两年平均分别降低了10.4%、13.4%、15.5%、11.7%、25.7%、3.2%,而WYJ23糙米中矿质营养含量未出现一致的下降现象。其中,2014年糙米Mn、Cu、Zn和Ni含量对CO_2浓度升高的负响应达到显著水平(P<0.05)。此外,糙米Fe(P<0.1,2014)、Mn(P<0.01,2013和2014)、Cu(P<0.1,2014)、Zn(P<0.01,2013和2014)、Ni(P<0.01,2014)、Se(P<0.05,2013; P<0.01,2014)含量在水稻品种间存在显著性差异。CO_2浓度升高不同程度地增加糙米中矿质元素积累量,6种元素两年平均增加2.1%~29.2%(IIY084)和12.8%~19.3%(WYJ23)。可见,CO_2浓度升高条件下,IIY084糙米中矿质元素含量较WYJ23有更明显的下降趋势,导致食用IIY084较WYJ23有更大的Fe、Mn、Cu、Zn、Ni、Se缺乏风险。因而,在确保粮食安全而进行增产品种选育时,应该优先选择矿质营养品质较高的水稻品种。
        To estimate the effects of elevated [CO_2] on the mineral nutrition of brown rice as well as the differences of effect between indica and japonica cultivars( Oryza sativa L.),the concentrations and accumulations of Fe,Mn,Cu,Zn,Ni and Se in brown rice of indica IIY084 and japonica WYJ23 were investigated at a free-air CO_2 enrichment( FACE) experimental facility in eastern China during 2013 and 2014. The target [CO_2]of the FACE plots was 200 μmol·mol-1 higher than the ambient. The results showed that there were significant CO_2 effects on grain and brown rice yields in both years. Average grain yield of two years increased by 33.1%( IIY084)and 14.3%( WYJ23),and the average brown rice yield enhanced by 34. 3%( IIY084) and16.3%( WYJ23) respectively under elevated [CO_2]. The average brown rice Fe,Mn,Cu,Zn,Ni and Se concentrations of two years in IIY084 decreased by 10.4%,13.4%,15.5%,11.7%,25.7% and 3. 2%,respectively,while the change trend of those in WYJ23 were inconsistent.Especially,there were negative CO_2 effects on Mn,Cu,Zn and Ni( P<0.05) concentrations in2014. In addition,there were significant differences in Fe( P<0.1,2014),Mn( P<0.01,2013 and 2014),Cu( P<0.1,2014),Zn( P<0.01,2013 and 2014),Ni( P<0.01,2014) and Se( P<0.05,2013; P<0.01,2014) concentrations in brown rice between the two cultivars. Fe,Mn,Cu,Zn,Ni and Se accumulations in both cultivars were affected by [CO_2] enrichment.Compared to the ambient,the average mineral nutrient accumulations of two years at elevated[CO_2]were increased by 2.1%-29.2%( IIY084) and 12.8%-19.3%( WYJ23),respectively.In short,concentrations of Fe,Mn,Cu,Zn,Ni and Se in the brown rice of II084 had greater reduction than that of WYJ23 under elevated [CO_2]. Taking into account the health of mankind who depend on rice,feeding on IIY084 may cause a greater risk of Fe,Mn,Cu,Zn,Ni and Se deficiency than WYJ23 under the global elevated [CO_2]scenario. In the future,more attentions should be paid on rice cultivars that can alleviate the nutrient deficiency due to the decline of mineral nutrition when screening and breeding of yield-increasing cultivars to ensure grain security.
引文
柴如山,牛耀芳,朱丽青,等.2011.大气CO2浓度升高对农产品品质影响的研究进展.应用生态学报,22(10):2765-2775.
    董桂春,王余龙,黄建晔,等.2004.稻米品质性状对开放式空气二氧化碳浓度增高的响应.应用生态学报,15(7):1217-1222.
    考希宾,王治伦,高艳.2007.微量元素锌和人体健康.中国地方病防治杂志,(3):192-194.
    赖上坤,庄时腾,吴艳珍,等.2015.大气CO2浓度和温度升高对超级稻生长发育的影响.生态学杂志,34(5):1253-1262.
    李春华,曾青,沙霖楠,等.2016.大气CO2浓度和温度升高对水稻地上部干物质积累和分配的影响.生态环境学报,25(8):1336-1342.
    李春华,曾青,沙霖楠,等.2017.大气CO2浓度和温度升高对水稻体内微量元素累积的影响.农业环境科学学报,36(6):1021-1026.
    刘钢,韩勇,朱建国,等.2002.稻麦轮作FACE系统平台.I.系统结构与控制.应用生态学报,13(10):1253-1258.
    庞静,朱建国,谢祖彬,等.2005.自由空气CO2浓度升高对水稻营养元素吸收和籽粒中营养元素含量的影响.中国水稻科学,19(4):350-354.
    杨树明,曾亚文,杜娟,等.2009.云南水稻土中主要矿质元素对水稻籽粒矿质元素积累的影响.湖南农业大学学报:自然科学版,35(6):583-587.
    袁蕊,聂磊云,郝兴宇,等.2017.大气CO2浓度升高对辣椒光合作用及相关生理特性的影响.生态学杂志,36(12):3510-3516.
    张福锁,曹一平.1992.根际动态过程与植物营养.土壤学报,29(3):239-250.
    周晓冬,赖上坤,周娟,等.2012.开放式空气中CO2浓度增高(FACE)对常规粳稻蛋白质和氨基酸含量的影响.农业环境科学学报,31(7):1264-1270.
    Allen L,de Benoist B,Dary O,et al.2006.Guidelines on food fortification with micronutrients.World Health Organization and Food and Agricultural Organization of the United Nations.Geneva:World Health Organization.
    Baker JT,Allen LH.1993.Contrasting crop species responses to CO2and temperature:Rice,soybean and citrus.Vegetatio,104/105:239-260.
    Cai C,Yin XY,He SQ,et al.2016.Responses of wheat and rice to factorial combinations of ambient and elevated CO2and temperature in FACE experiments.Global Change Biology,22:856-874.
    Chen C,Jiang Q,Ziska LH,et al.2015.Seed vigor of contrasting rice cultivars in response to elevated carbon dioxide.Field Crops Research,178:63-68.
    Cramer W,Bondeau A,Woodward FI,et al.2001.Global response of terrestrial ecosystem structure and function to CO2and climate change:Results from six dynamic global vegetation models.Global Change Biology,7:357-373.
    Girish JK.2016.Critical role of nutrition,herbs and spices in health and longevity.BIT’s 4th annual world congress of geriatrics and gerontology,Kaohsiung.
    Harrison GG.2010.Public health interventions to combat micronutrient deficiencies.Public Health Reviews,32:256-266.
    IPCC.2013.Climate Change 2013:The Physical Science Basis.2013.Cambridge:Cambridge University Press.
    Kim HY,Lieffering M,Kobayashi K,et al.2003.Effects of free-air CO2enrichment and nitrogen supply on the yield of temperate paddy rice crops.Field Crops Research,83:261-270.
    Li CH,Zhu JG,Sha LN,et al.2017.Rice(Oryza sativa L.)growth and nitrogen distribution under elevated CO2concentration and air temperature.Ecological Research,32:405-411.
    Lieffering M,Kim HY,Kobayashi K,et al.2004.The impact of elevated CO2on the elemental concentrations of field-grown rice grains.Field Crops Research,88:279-286.
    Loladze I.2002.Rising atmospheric CO2and human nutrition:Towards globally imbalanced plant stoichiometry.Trends in Ecology&Evolution,17:457-461.
    Long SP,Ainsworth EA,Leakey ADB,et al.2006.Food for thought:Lower-than-expected crop yield stimulation with rising CO2concentrations.Science,312:1918-1921.
    Mcgrath SP,Zhao FJ.2015.Concentrations of metals and metalloids in soils that have the potential to lead to exceedance of maximum limit concentrations of contaminants in food and feed.Soil Use and Management,31(Suppl.1):34-45.
    Muthayya S,Sugimoto JD,Montgomery S,et al.2014.An overview of global rice production,supply,trade,and consumption.Annals of the New York Academy of Sciences,1324:7-14.
    Myers SS,Zanobetti A,Kloog I,et al.2014.Increasing CO2threatens human nutrition.Nature,510:139-142.
    NOAA.2018.Annual mean growth rate for Mauna Loa,Hawaii.[2018-06-12].https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html.
    Roy KS,Bhattacharyya P,Neogi S,et al.2012.Combined effect of elevated CO2and temperature on dry matter production,net assimilation rate,C and N allocations in tropical rice(Oryza sativa L.).Field Crop Research,139:71-79.
    Seneweera SP,Conroy JP.1997.Growth,grain yield and quality of rice(Oryza sativa L.)in response to elevated CO2and phosphorus nutrition.Soil Science and Plant Nutrition,43:1131-1136.
    Taub DR,Miller B,Allen H.2008.Effects of elevated CO2on the protein concentration of food crops:A meta-analysis.Global Change Biology,14:565-575.
    Terao T,Miura S,Yanagihara T,et al.2005.Influence of freeair CO2enrichment(FACE)on the eating quality of rice.Journal of the Science of Food and Agriculture,85:1861-1868.
    Tulchinsky TH.2010.It is not just the broad street pump.Journal of Public Health,32:134-135.
    Usui Y,Sakai H,Tokida T,et al.2016.Rice grain yield and quality responses to free-air CO2enrichment combined with soil and water warming.Global Change Biology,22:1256-1270.
    Wang YX,Frei M,Song QL,et al.2011.The impact of atmospheric CO2concentration enrichment on rice quality:Aresearch review.Acta Ecologica Sinica,31:277-282.
    Xie BH,Zhou ZX,Mei BL,et al.2012.Influences of free-air CO2enrichment(FACE),nitrogen fertilizer and crop residue incorporation on CH4emissions from irrigated rice fields.Nutrient Cycling in Agroecosystems,93:373-385.
    Yang LX,Wang YL,Dong GC,et al.2007.The impact of freeair CO2enrichment(FACE)and nitrogen supply on grain quality of rice.Field Crops Research,102:128-140.
    Zhu CW,Kobayashi K,Loladze I,et al.2018.Carbon dioxide(CO2)levels this century will alter the protein,micronutrients,and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries.Science Advances,4:eaaq1012.
    Ziska LH,Namuco O,Moya T,et al.1997.Growth and yield response of field grown tropical rice to increasing carbon dioxide and air temperature.Agronomy Journal,89:45-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700