用户名: 密码: 验证码:
不同反应条件对污泥水热碳化脱水性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:EFFECT OF REACTION CONDITION ON HYDROTHERMAL CARBONIZATION DEWATERING PERFORMANCE OF SLUDGE
  • 作者:徐振佳 ; 陆宇倩 ; 李莲 ; 周俊 ; 顾立锋 ; 王长智 ; 丁志农 ; 张雪英
  • 英文作者:XU Zhen-jia;LU Yu-qian;LI Lian;ZHOU Jun;GU Li-feng;WANG Chang-zhi;DING Zhi-nong;ZHANG Xue-ying;College of Environment,Nanjing Tech University;College of Biotechnology and Pharmaceutical Engineering,Nanjing University of Technology;Zhejiang Heze Environmental Technology Co.,Ltd.;Environmental Science Research and Design Institute of Zhejiang Province;
  • 关键词:污泥 ; 水热碳化 ; 脱水性能 ; 工艺参数
  • 英文关键词:sludge;;hydrothermal carbonization;;dehydration performance;;process parameters
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:南京工业大学环境学院;南京工业大学生物与制药工程学院;浙江合泽环境科技股份有限公司;浙江省环境保护科学设计研究院;
  • 出版日期:2019-03-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.249
  • 基金:国家自然科学基金(21777069);; 国家重点研发计划“政府间国际科技创新合作”重点专项课题(2016YFE0112800);; 国家科技重大专项课题(2018ZX07208-009);; 江苏省先进生物制造创新中心
  • 语种:中文;
  • 页:HJGC201903001
  • 页数:7
  • CN:03
  • ISSN:11-2097/X
  • 分类号:4-9+15
摘要
随着城市化进程的加快,我国剩余活性污泥的产生量逐年增加,活性污泥中的胞外聚合物EPS含黏性蛋白类物质并高度亲水,因此破坏污泥絮体、释放和水解黏性有机物是改善污泥脱水性能的有效途径。通过分析水热碳化调理前后污泥比阻(SRF)、黏度(μ)、絮体形态特征及上清液的理化性质,考察了温度、时间以及促进剂Fe_2(SO_4)_3对水热碳化污泥脱水性能的影响。结果表明:反应温度为220℃、反应时间为2 h、Fe_2(SO_4)_3浓度为0. 5 mol/L时的水热碳化处理,污泥的脱水性能最好,比阻和黏度分别比对照组降低了97. 7%和98. 7%。水热碳化的高温高压环境破坏了污泥的絮体,使污泥胶体结构的内聚力降低,污泥的脱水性能得到改善。
        With the acceleration of urbanization,the amount of excess activated sludge produced in China has increased rapidly year by year. The extracellular polymer EPS in activated sludge contains viscous protein substances and is highly hydrophilic. Therefore,destroying sludge flocs,releasing and hydrolyzing viscous organic compounds are effective ways to improve sludge dewatering performance. By analyzing the specific resistance to filtration( SRF),viscosity( μ) and floc morphology of sludge and physicochemical properties of supernatant before and after hydrothermal carbonization conditioning,the effect of different temperature,time,and accelerant Fe_2( SO_4)_3 on hydrothermal carbonization dewatering performance were studied. The results showed that when the reaction temperature was 220 ℃,the reaction time was 2 h,and the concentration of Fe_2( SO_4)_3 was 0. 5 mol/L,the highest dewatering performance of the sludge was achieved. The specific resistance to filtration and viscosity were reduced by 97. 7% and 98. 7% compared with the control group. The high temperature and high-pressure environment of hydrothermal carbonization destroyed the flocs of the sludge,reduced the cohesive force of the sludge colloid structure,and improved the dewatering performance of the sludge.
引文
[1] Praspaliauskas M,Pedisius N. A review of sludge characteristics in Lithuania’s wastewater treatment plants and perspectives of its usage in thermal processes[J]. Renewable&Sustainable Energy Reviews,2017,67:899-907.
    [2] Zhai Y,Liu X,Yun Z,et al. Hydrothermal carbonization of sewage sludge:the effect of feed-water pH on fate and risk of heavy metals in hydrochars[J]. Bioresour Technol,2016,218:183-188.
    [3] PhamAnh Tuan,SillanpaaMika,Isosaari Pirjo. Sewage sludge electro-dewatering treatment:a review[J]. Drying Technology,2012,30(7):691-706.
    [4] Yuan H P,Zhu N W,Song F Y. Dewaterability characteristics of sludge conditioned with surfactants pretreatment by electrolysis[J].Bioresource Technology,2011,102(3):2308.
    [5] Guan B,Yu J,Fu H,et al. Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2solution[J].Water Research,2012,46(2):425-432.
    [6] Feng X,Deng J,Lei H,et al. Dewaterability of waste activated sludge with ultrasound conditioning[J]. Bioresource Technology,2009,100(3):1074-1081.
    [7] Yuan H P,Zhu N W,Song L J. Conditioning of sewage sludge with electrolysis:effectiveness and optimizing study to improve dewaterability[J]. Bioresource Technology,2010,101(12):4285-4290.
    [8] Tony M A,Zhao Y Q,Fu J F,et al. Conditioning of aluminiumbased water treatment sludge with Fenton's reagent:effectiveness and optimising study to improve dewaterability[J]. Chemosphere,2008,72(4):673-677.
    [9] Tony M A,Zhao Y Q,Tayeb A M. Exploitation of Fenton and Fenton-like reagents as alternative conditioners for alum sludge conditioning[J].环境科学学报(英文版),2009,21(1):101-105.
    [10] Neyens E,Baeyens J,Weemaes M,et al. Pilot-scale peroxidation(H2O2)of sewage sludge[J]. Journal of Hazardous Materials,2003,98(1/3):91-106.
    [11] Citeau M,Larue O,Vorobiev E. Influence of salt, pH and polyelectrolyte on the pressure electro-dewatering of sewage sludge[J]. Water Research,2011,45(6):2167.
    [12] Dearfield K L,Abernathy C O,Ottley M S,et al. Acrylamide:its metabolism,developmental and reproductive effects,genotoxicity,and carcinogenicity[J]. Mutation Research/reviews in Genetic Toxicology,1988,195(1):45-77.
    [13] Bondy S C. The neurotoxicity of environmental aluminum is still an issue[J]. Neurotoxicology,2010,31(5):575-581.
    [14] Xue Y,Liu H,Chen S,et al. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge[J]. Chemical Engineering Journal,2015,264:174-180.
    [15] Zhen G, Lu X, Wang B, et al. Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment:effectiveness and statistical optimization[J]. Frontiers of Environmental Science&Engineering,2014,8(2):267-276.
    [16] Zhang L,Liu Y S. A novel method for harmless disposal and resource reutilization of steel wire rope sludges[J]. Environ Sci Pollut Res Int,2016,23(19):19797-19805.
    [17] Mariusz Tańczuk,Wojciech Kostowski,Marcin Kara's. Applying waste heat recovery system in a sewage sludge dryer-A technical and economic optimization[J]. Energy Conversions&Smanagement,2016,125:121-132.
    [18] Funke A,Ziegler F. Hydrothermal carbonization of biomass:A summary and discussion of chemical mechanisms for process engineering[J]. Biofuels Bioproducts&Biorefining,2010,4(2):160-177.
    [19] Mancera C,Ferrando F,SalvadóJ,et al. Kraft lignin behavior during reaction in an alkaline medium[J]. Biomass&Bioenergy,2011,35(5):2072-2079.
    [20] Valo A,Carrère H,Delgenès J P. Thermal,chemical and thermochemical pre-treatment of waste activated sludge for anaerobic digestion[J]. Journal of Chemical Technology&Biotechnology,2010,79(11):1197-1203.
    [21] Nyktari E, Danso-Boateng E, Wheatley A, et al. Anaerobic digestion of liquid products following hydrothermal carbonisation of faecal sludge at different reaction conditions[J]. Desalination&Water Treatment,2017(1):1-7.
    [22] Zhai Y,Liu X,Zhu Y,et al. Hydrothermal carbonization of sewage sludge:the effect of feed-water pH on fate and risk of heavy metals in hydrochars[J]. Bioresource Technology,2016,218:183-188.
    [23] Parshetti G K,Liu Z,Jain A,et al. Hydrothermal carbonization of sewage sludge for energy production with coal[J]. Fuel,2013,111(3):201-210.
    [24] Dansoboateng E,Shama G,Wheatley A D,et al. Hydrothermal carbonisation of sewage sludge:Effect of process conditions on product characteristics and methane production[J]. Bioresource Technology,2015,177(177C):318-327.
    [25] Tian T,Qiao S,Li X,et al. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion[J]. Bioresource Technology,2017,224:41-47.
    [26] Subedi R,Taupe N,Pelissetti S,et al. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars:influence of pyrolysis temperature and feedstock type[J].Journal of Environmental Management,2016,166:73-83.
    [27] Lombi E,Donner E,Tavakkoli E,et al. Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and posttreatment processing of sewage sludge[J]. Environmental Science&Technology,2012,46(16):9089-9096.
    [28] Fuertes A B,Arbestain M C,Sevilla M,et al. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover[J]. Chemistry-A European Journal,2009,15(16):4195.
    [29] Higgins M J,Novak J T. The effect of cations on the settling and dewatering of activated sludges:laboratory results[J]. Water Environment Research,1997,69(2):215-224.
    [30] Guiotoku M,Hansel F A,Novotny E H,et al. Molecular and morphological characterization of hydrochar produced by microwave-assisted hydrothermal carbonization of cellulose[J]. Pesquisa Agropecuária Brasileira,2012,47(5):687-692.
    [31] Ge H,Jensen P D,Batstone D J. Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge[J]. Water Research,2011,45(4):1597-1606.
    [32] Zhang G,Yang J,Liu H,et al. Sludge ozonation:disintegration,supernatant changes and mechanisms[J]. Bioresource Technology,2009,100(3):1505-1509.
    [33] Parshetti G K,Hoekman S K,Balasubramanian R. Chemical,structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches[J]. Bioresour Technol,2013,135(3):683-689.
    [34] Wang H F,Hu H,Wang H J,et al. Impact of dosing order of the coagulant and flocculant on sludge dewatering performance during the conditioning process[J]. Science of the Total Environment,2018,643:1065-1073.
    [35] Wang L L,Wang L F,Ren X M,et al. pH dependence of structure and surface properties of microbial EPS[J].Environmental Science&Technology,2012,46(2):737-744.
    [36] Yuan H,Wang T,Li Q,et al. Effects of different pretreatment methods on sludge dewatering performance[J]. Chinese Journal of Environmental Engineering,2015,9(8):4015-4020.
    [37] He C,Giannis A,Wang J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization:hydrochar fuel characteristics and combustion behavior[J]. Applied Energy,2013,111(11):257-266.
    [38] Sevilla M,Fuertes A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon,2009,47(9):2281-2289.
    [39] Bossmann S H,Oliveros E,Gob S,et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced fenton reactions[J]. Journal of Physical Chemistry A,1998,102(102):5542-5550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700