用户名: 密码: 验证码:
一维二氧化碳管道全孔破裂模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-dimensional carbon dioxide pipe full hole fracture model
  • 作者:刘斌 ; 尤占平 ; 邓佳佳
  • 英文作者:LIU Bin;YOU Zhanping;DENG Jiajia;School of Mechanical Engineering, Shijiazhuang Tiedao University;School of Port and Transportation Engineering, Zhejiang Ocean University;
  • 关键词:气液两相流 ; 相变 ; 碳捕捉技术 ; 计算流体力学 ; 状态方程
  • 英文关键词:gas-liquid flow;;phase transition;;carbon capture and storage;;computational fluid dynamics;;equation of state
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:石家庄铁道大学机械工程学院;浙江海洋大学港航与交通运输工程学院;
  • 出版日期:2019-04-17 16:35
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:河北省高等学校科学技术研究项目(ZD2016155)
  • 语种:中文;
  • 页:HGSZ201906016
  • 页数:8
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:156-163
摘要
在碳捕捉和储存(CCS)技术中,CO2主要通过高压管道从捕获点输送到储存点。一旦发生管道破裂引起泄漏,管道破裂条件、泄漏量大小与事故后果直接相关。因此,为了确保安全,必须对管道破裂后CO2管道流量等进行准确预测,特别是获取破裂条件,为大规模CCS项目的实施提供有效的技术支持。建立了一维(1D)计算流体动力学(CFD)管道破裂减压预测模型,通过使用精确的状态方程(PR,GERG)来实现更好的源强度估计。摩擦和传热的影响是通过动量和能量项来实现的。该模型适用于单相和气液两相减压流动。在两相模拟方面,通过引入质量和能量项来实现液/气转变。通过三个独立的减压流动实验验证了模型预测。此外,还研究了管壁粗糙度和管径对泄漏流量的影响。这项研究有助于提供一个可靠的与CCS相关的风险评估方法。
        In carbon capture and storage(CCS) technology, CO2 is transported from the capture point to the storage point primarily through high pressure piping. The potential for pipeline rupture and leakage, possibly resulting in catastrophic accidents, will presents a risk to human and animal populations. Therefore, to ensure pipeline safety,an essential risk assessment involving an accurate prediction of CO2 pipe flow following the pipeline fracture,especially obtaining the conditions at rupture, provides effective technical support for the implementation of largescale CCS projects and contribute to pipeline safety. In the present paper, a one-dimensional(1 D) Computational Fluid Dynamics(CFD) pipe flow model to predict pipeline fracture is developed. Precise Equation of States(EOSs),PR and GERG, is used to achieve more accurate source strength estimates. The effects of friction and heat transfer through the pipe wall are accounted for through momentum and energy source terms. The model is applicable for both single-phase and gas-liquid two-phase flow. In terms of two-phase simulation, liquid/vapour transition is implemented by introducing mass and energy source terms. The model predictions are validated by data from three independent depressurization experiments. Also, the effects of pipe wall roughness and pipe diameter on mass outflow rate are investigated. This research helps provide a reliable method for risk assessment related to CCS.
引文
[1] Vianello C, Macchietto S, Maschio G. Conceptual models for CO2release and risk assessment:a review[J]. Chemical Engineering Transactions, 2012, 26:573-578.
    [2] Liu X, Godbole A, Lu C, et al. Investigation of terrain effects on the consequence distance of CO2released from high-pressure pipelines[J]. International Journal of Greenhouse Gas Control,2017, 66:264-275.
    [3] Liu B, Liu X, Lu C, et al. A CFD decompression model for CO2mixture and the influence of non-equilibrium phase transition[J].Applied Energy, 2018, 227:516-524.
    [4] Lee J S, Choieport E C. CO2leakage environmental damage cost—a CCS project in South Korea[J]. Renewable and Sustainable Energy Reviews, 2018, 93:753-758.
    [5] Liu X, Godbole A, Lu C, et al. Source strength and dispersion of CO2releases from high-pressure pipelines:CFD model using real gas equation of state[J]. Applied Energy, 2014, 126:56-68.
    [6] Brown S, Martynov S, Mahgerefteh H, et al. A homogeneous relaxation flow model for the full bore rupture of dense phase CO2pipelines[J]. International Journal of Greenhouse Gas Control,2013, 17:349-356.
    [7] Woolley R M, Fairweather M, Wareing C J. An integrated, multiscale modelling approach for the simulation of multiphase dispersion from accidental CO2pipeline releases in realistic terrain[J]. International Journal of Greenhouse Gas Control, 2014,27:221-238.
    [8] Morrow T B, Bass R L, Lock J A. An LPG pipeline break flow model[J]. Journal of Energy Resources Technology, 1983, 105:379-387.
    [9] Witlox W M H, Stene J, Harper M. Modelling of discharge and atmospheric dispersion for carbon dioxide releases including sensitivity analysis for wide range of scenarios[J]. Energy Procedia, 2011, 4:2253-2260.
    [10] Lu C, Michal G, Elshahomi A. Investigation of the effects of pipe wall roughness and pipe diameter on the decompression wave speed in natural gas pipelines[C]//9th International Pipeline Conference. Calgary, Alberta, Canada, 2012.
    [11] Angielczyk W, Bartosiewicz Y, Butrymowicz D, et al. 1-D modeling of supersonic carbon dioxide two-phase flow through ejector motive nozzle[C]//International Refrigeration and Air Conditioning Conference. Purdue University, 2010.
    [12] Brown S, Martynov S, Mahgerefteh H, et al. Modelling the nonequilibrium two-phase flow during depressurisation of CO2pipelines[J]. International Journal of Greenhouse Gas Control,2014, 30:9-18.
    [13] Elshahomi A, Lu C, Michal C, et al. Decompression wave speed in CO2mixtures:CFD modelling with the GERG-2008 equation of state[J]. Applied Energy, 2015 140:20-32.
    [14] Liu X, Godbole A, Lu C, et al. Study of the consequences of CO2released from high-pressure pipelines[J]. Atmospheric Environment, 2015, 116:51-64.
    [15] Deng Y J, Hu H B, Yu B. A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain[J]. Journal of Hazardous Materials, 2018, 342:418-428.
    [16] Peng D Y, Robinson D B. A new two-constant equation of state[J].Industrial&Engineering Chemistry Fundamentals, 1976, 15:59-64.
    [17] Kunz O, Wagner W. The GERG-2008 wide-range equation of state for natural gases and other mixtures:an expansion of GERG-2004[J]. Journal of Chemical&Engineering Data, 2012, 57:3032-3091.
    [18] Liu B, Liu X, Lu C, et al. Multi-phase decompression modeling of CO2pipelines[J]. Greenhouse Gases:Science and Technology,2017, 7(4):665-679.
    [19] Guo X, Yan X, Yu J, et al. Pressure responses and phase transitions during the release of high pressure CO2from a largescale pipeline[J]. Energy, 2017, 118:1066-1078.
    [20] Botros K K, Geerligs J, Rothwell B, et al. Measurements of decompression wave speed in binary mixtures of carbon dioxide and impurities[J]. Journal of Pressure Vessel Technology, 2016,139(2):021301.
    [21] Botros K K, Geerligs J, Rothwell B, et al. Transferability of decompression wave speed measured by a small-diameter shock tube to full size pipelines and implications for determining required fracture propagation resistance[J]. International Journal of Pressure Vessels and Piping, 2010, 87:681-695.
    [22] Botros K K, Geerligs J, Rothwell B, et al. Measurements of decompression wave speed in simulated anthropogenic carbon dioxide mixtures containing hydrogen[J]. Journal of Pressure Vessel Technology, 2017, 139(2):021201-7.
    [23] Armsmstrong K, Allanson D. 2"NB shocktube releases of dense phase CO2[R]. Leicestershire:DNV GL&GL Industrial Services UK Ltd, 2014.
    [24] Oke A, Mahgerefteh H, Economou I, et al. A transient outflow model for pipeline puncture[J]. Chemical Engineering Science,2003, 58:4591-4604.
    [25] Phillips A G, Robinson C G. Gas decompression behavior following the rupture of high pressure pipelines-Phase 1, PRCI Contract PR-273-0135[C]//Pipeline Research Council International, 2002.
    [26] Savidge J L. Report to AGA transmission measurement committee task Group 13 on A.G.A. Report No.10, speed of sound[C]//AGA Operations Conference. Marriott, Denver, USA, 2001.
    [27] Zhou X J, Li K, Tu R, et al. A modelling study of the multiphase leakage flow from pressurised CO2pipeline[J]. Journal of Hazardous Materials, 2016, 306:286-294.
    [28] Aursand E, Aursand P, Hammer M, et al. The influence of CO2mixture composition and equations of state on simulations of transient pipeline decompression[J]. International Journal of Greenhouse Gas Control, 2016, 54(2):599-609.
    [29] ANSYS. ANSYS FLUENT UDF Manual[Z]. USA:ANSYS Inc.,2011.
    [30] Lee W H. A Pressure Iteration Scheme for Two-phase Flow Modeling[M]. Washington D C:Hemisphere Publishing, 1980:407-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700