用户名: 密码: 验证码:
高速列车碰撞缓冲吸能平台力设计研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on energy absorption elements platform force design of high speed train collision
  • 作者:姜士鸿 ; 闫凯波 ; 陆思思 ; 张芳瑶 ; 许平
  • 英文作者:JIANG Shihong;YAN Kaibo;LU Sisi;ZHANG Fangyao;XU Ping;CRRC Changchun Railway Vehicles Co., Ltd;Key Laboratory for Track Traffic Safety of Ministry of Education, Central South University;
  • 关键词:高速列车 ; 车体耐撞性 ; 吸能元件 ; 平台力配置
  • 英文关键词:high speed train;;car body crashworthiness;;energy absorbing element;;platform force configuration
  • 中文刊名:CSTD
  • 英文刊名:Journal of Railway Science and Engineering
  • 机构:中车长春轨道客车股份有限公司;中南大学轨道交通安全教育部重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:铁道科学与工程学报
  • 年:2019
  • 期:v.16;No.111
  • 基金:国家自然科学基金资助项目(51675537);; 国家重点研发计划资助项目(2016YFB1200505-016)
  • 语种:中文;
  • 页:CSTD201906004
  • 页数:7
  • CN:06
  • ISSN:43-1423/U
  • 分类号:30-36
摘要
为研究高速列车吸能元件平台力的不同配置对碰撞响应的影响,建立8编组列车一维碰撞动力学模型。对列车吸能元件的平台力进行配置,分别为所有列车吸能元件平台力均相等,列车吸能元件平台力从车头向车尾呈指数减小,列车吸能元件平台力从车头向车尾呈指数增大。对具有不同吸能元件平台力配置的列车碰撞进行仿真分析,研究不同配置的列车吸能元件平台力对列车碰撞动力学响应的影响。研究结果表明:列车中间车吸能元件平台力小于或等于头车吸能元件平台力时易导致刚性碰撞,列车中间车吸能元件平台力大于头车吸能元件平台力时可避免车辆间的刚性碰撞,在不发生刚性碰撞的前提下,中间车吸能元件平台力与头车吸能元件平台力相差较小时,吸能效率较高,反之则吸能效率较低。
        In order to study the influence of different configurations of the platform forces of high-speed train energy absorbing elements on the impact response, a one-dimensional train collision dynamics model composed of 8 vehicles was established. The platform forces of the high-speed train energy absorbing elements were configured, the platform forces of all energy absorbing elements were equal, the platform forces of high-speed train energy absorbing elements decreased exponentially from the head car, and the platform forces of high-speed train energy absorbing elements increased exponentially from the head car. Train collision with different energy absorbing elements was simulated and analyzed, and the impact response of high-speed train energy absorbing element's platform force was studied. The results show that rigid collision was easily caused when the platform force for the energy absorbing element of the middle car is less than or equal to the platform force for the energy absorbing element of the head car. When the platform force for the energy absorbing element of the middle car is greater than that of the head car, the rigid collision between the vehicles can be avoided. In the case of no rigid collision, when the platform force for the energy absorbing element of the middle car is close to the platform force for the energy absorbing element of the head car, the energy absorption efficiency is relatively high.
引文
[1]YAO S,YAN K,LU S,et al.Energy-absorption optimisation of locomotives and scaled equivalent model validation[J].International Journal of Crashworthiness,2017,22(4):1-12.
    [2]XU P,LU S,YAN K,et al.Energy absorption design study of subway vehicles based on a scaled equivalent model test[J].Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2019,233(1):3-15.
    [3]YAO S,YAN K,LU S,et al.Equivalence study involving rail vehicle collision test conditions[J].Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2019,233(1):73-89.
    [4]LU S,XU P,YAN K,et al.A force/stiffness equivalence method for the scaled modelling of a high-speed train head car[J].Thin-Walled Structures,2019,137:129-142.
    [5]XU P,YANG C,PENG Y,et al.Crash performance and multi-objective optimization of a gradual energyabsorbing structure for subway vehicles[J].International Journal of Mechanical Sciences,2016(107):1-12.
    [6]XU P,YANG C,PENG Y,et al.Cut-out grooves optimization to improve crashworthiness of a gradual energy-absorbing structure for subway vehicles[J].Materials&Design,2016,103:132-143.
    [7]YANG C,LI Q,XIAO S,et al.On the overriding issue of train front end collision in rail vehicle dynamics[J].Vehicle System Dynamics,2018(3):1-23.
    [8]LING L,Dhanasekar M,Thambiratnam D P.Frontal collision of trains onto obliquely stuck road trucks at level crossings:Derailment mechanisms and simulation[J].International Journal of Impact Engineering,2017(100):154-165.
    [9]LU G.Energy absorption requirement for crashworthy vehicles[J].Foreign Rolling Stock,2006,216(1):31-39.
    [10]王宝金,闫凯波,陆思思,等.基于多体动力学的地铁列车吸能量设计[J].铁道科学与工程学报,2018,15(4):1016-1022.WANG Baojin,YAN Kaibo,LU Sisi,et al.Energy absorption design of metro train based on multibody dynamics[J].Journal of Railway Science and Engineering,2018,15(4):1016-1022.
    [11]田红旗,卢执中.列车撞击动力学建模研究[J].铁道车辆,1997(4):8-11.TIAN Hongqi,LU Zhizhong.Modeling study of train impact dynamics[J].Railway Vehicle,1997(4):8-11.
    [12]田红旗,许平.吸能列车与障碍物撞击过程的研究和分析[J].铁道科学与工程学报,2002,20(3):55-60.TIAN Hongqi,XU Ping.Analysis of collision between energy-absorbing train and barrier[J].Journal of Railway Science and Engineering,2002,20(3):55-60.
    [13]高广军,田红旗,姚松,等.列车多体耦合撞击分析[J].中国铁道科学,2005,26(4):93-97.GAO Guangjun,TIAN Hongqi,YAO Song,et al.Multi-car coupling collision analysis[J].China Railway Science,2005,26(4):93-97.
    [14]GM/RT 2100-2000,Structural requirement for railway vehicles[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700