用户名: 密码: 验证码:
Si和C的存在形态对TiSiCN薄膜微观结构与性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Existing Forms of Si and C on Microstructure and Properties of TiSiCN Coatings
  • 作者:郭岩 ; 王博 ; 米紫昊 ; 陈朋涛 ; 陈创浩
  • 英文作者:GUO Yan;WANG Bo;MI Zi-hao;CHEN Peng-tao;CHEN Chuang-hao;Xi'an Thermal Power Research Institute Co.,Ltd.;
  • 关键词:TiSiCN ; 硬度薄膜 ; 硬度 ; 磨损率 ; 摩擦系数 ; 工业用钢H13
  • 英文关键词:TiSiCN;;hard coating;;hardness;;wear rate;;friction coefficient;;H13 steel
  • 中文刊名:CLBH
  • 英文刊名:Materials Protection
  • 机构:西安热工研究院有限公司;
  • 出版日期:2019-02-15
  • 出版单位:材料保护
  • 年:2019
  • 期:v.52;No.481
  • 语种:中文;
  • 页:CLBH201902019
  • 页数:6
  • CN:02
  • ISSN:42-1215/TB
  • 分类号:89-93+119
摘要
为扩展Ti Al N和Ti CN薄膜的应用,以适应高速切削和绿色干式切削加工技术发展趋势和要求,采用工业化多弧离子镀在工业用钢H13表面制备Ti SiCN硬质薄膜,以改善H13钢的力学和摩擦学性能。借助扫描电子显微镜、X射线衍射仪、X射线光电子能谱仪、维氏显微硬度计、摩擦磨损仪研究了Si和C的存在形态及其对Ti SiCN薄膜的微观形貌、微观结构、硬度和摩擦磨损性能的影响。结果表明:Ti Si CN薄膜组织致密,具有纳米晶Ti(CN)与非晶相(SiC、Si3N4和C);薄膜中C原子固溶于Ti(CN)中,随着C含量的增加,Ti(CN)固溶度增加;部分C以非晶态的形式存在,起到阻碍Ti Si CN纳米晶粒生长作用; Si以非晶SiC和Si3N4相的形式存在,并包裹Ti CN纳米晶,抑制薄膜晶粒的长大;高Si含量Ti Si CN-No.2薄膜和高C含量Ti Si CN-No.3薄膜表现出高硬度和耐磨减摩特性。
        Ti Si CN hard coatings were fabricated on H13 steel using an industrial multi-arc ion plating set-up with the aim to improve the mechanical and tribological properties of H13 steel. By means of scanning electron microscopy( SEM),X-ray diffractometer( XRD),X-ray photoelectron spectroscope( XPS),microhardness tester and friction and wear tester,the existing forms of Si and C and their effects on the morphology,microstructure,hardness and friction and wear properties of Ti Si CN coatings were analyzed. Results showed that the coatings had a composite structure of Ti( CN) nanocrystalline and amorphous phases( Si C,Si3 N4 and C) and meanwhile presented a dense structure.Carbon existed in Ti( CN) solid solution and an enhanced C content increased the solid solubility. Parts of C atoms existed in an amorphous state,prohibiting the growth of Ti CN grains. Si existed in amorphous state of Si C and Si3 N4,encapsulating Ti CN grains and restraining the growth of grains. The coatings with high Si or with high C presented the wonderful properties including a high hardness and anti-wear properties.
引文
[1]杜晋,张剑峰,张超,等.水轮机金属材料及其涂层抗空蚀和沙浆冲蚀研究进展[J].表面技术,2016,45(10):154-161.
    [2]潘国顺,杨文言,邵天敏,等.多弧离子镀硬质膜的抗空蚀性能研究[J].摩擦学学报,2001,21(1):15-18.
    [3] QIN C P,ZHENG Y G,WEI R. Cavitationerosion behavior of nanocomposite Ti-Si-C-N and Ti/Ti-Si-C-N coatings deposited on 2Cr13 stainless steel using a plasma enhanced magnetron sputtering process[J]. Surface and Coatings Technology,2010,204:3 530-3 538.
    [4] KRELLA A K,CZYZNIEWSKI A,GILEWICZ A,et al.Cavitation erosion of Cr N/Cr CN multilayer[J]. Wear,2017,386-387:80-89.
    [5]何照荣,孙志伟,宣征南,等.Ti Al Si N涂层增韧技术及抗氧化性研究进展[J].热加工工艺,2015,44(12):18-22.
    [6]罗杉正,张晓宇,袁晓光,等.Ti N/Ti Si N多层膜高温微动磨损特性[J].金属热处理,2015,40(2):81-85.
    [7]蔡妍,李建平,何利民,等.电子束物理气相沉积热障涂层抗冲蚀性能研究[J].真空,2014,51(2):27-30.
    [8]唐宇,尹德政.气相沉积涂层技术用于钻探机具的硬质润滑薄膜[J].价值工程,2014,21:53-55.
    [9] DERFLINGER V H,SCHUTZE A,ANTE M. Mechanical and structural properties of various alloyed Ti Al N-based hard coatings[J]. Surface and Coatings Technology,2006,200(16-17):4 693-4 700.
    [10]覃正海,鲜广,赵海波,等.切削刀具表面Ti CN涂层的研究现状与发展[J].表面技术,2016,45(6):125-133.
    [11]许俊华,曹峻,喻利花.磁控溅射制备Ti CN复合膜的微结构与性[J].中国有色金属学报,2012,22(11):3 123-3 128.
    [12]周颐辛,祝新发,张晶晶,等.离子镀Ti CN和Ti N工具涂层的微结构与切削性能[J].工具技术,2010,44(11):18-21.
    [13]姜波,严宏志,王社权,等. Ti CN/Al2O3涂层厚度对刀片切削性能的影响及其磨损机理研究[J].硬质合金,2015,32(3):188-194.
    [14]罗自成,王均涛. Ti Al N刀具涂层影响因素的研究[J].材料热处理技术,2012,41(2):172-174.
    [15] WUSTEFIELD C,RAFAJA D,KLEMM V,et al. Effect of the aluminium content and the bias voltage on the microstructure formation in Ti1-xAlxN protective coatings grown by cathodic are evaporation[J]. Surface and Coatings Technology,2010,205(5):1 345-1 349.
    [16] LUO Q. Temperature dependent friction and wear of magnetron sputtered coating Ti Al N/VN[J]. Wear,2011,271(9):2 058-2 066.
    [17] XIAO J Q,LANG W C,GONG J,et al. Effects of axisymmetric magnetic field on the distribution of macroparticles on Ti N and(Ti,Al)N films by arc ion plating[J]. Physics Procedia,2011,18(12):193-201.
    [18] GUO Y,MA S L,XU K W,et al.The nanostructured phase transition of superhard Ti-Si-C-N coatings[J].Nanotechnology,2008,19(21):215603.
    [19] GUO Y,MA S L,XU K W,et al. On the oxidation resistance of super-hard Ti-Si-C-N coatings[J].Journal of Materials Research,2008,23(9):2 420-2 428.
    [20] MA S L,MA D Y,GUO Y,et al. Synthesis and characterization of super hard,self-lubricating Ti-Si-C-N nanocomposite coatings[J]. Acta Materialia,2007,55(18):6 350-6 355.
    [21]辛欣,苏永要,王愉.退火处理对Ti Si CN、Ti Cr Si CN及Cr Si CN涂层结构和机械性能的影响[J].电镀与涂饰,2015,34(18):1 062-1 067.
    [22]曾俊杰,龙莹,伍尚华.PVD-Ti Al N和PVD-Ti Al Si N涂层氮化硅刀具的切削性能研究[J].人工晶体学报,2015,44(9):2 450-2 455.
    [23]韩振威,林有希.Ti Al Si N涂层刀具研究新进展[J].工具技术,2012,46(2):3-8.
    [24]朱鹏志,朱颖,李刘合.TiAlSiN涂层刀具的发展与应用[J].新技术新工艺,2014(5):105-110.
    [25]李佳,陈利,王社权. Ti Al Si N多元PVD涂层的研究[J].硬质合金,2010,27(5):263-268.
    [27]王鹏,张杰江,胡亚民.H13钢的应用现状[J].模具制造,2007(12):3-7.
    [28]王越.钛表面多弧离子镀沉积Ti Si CN涂层的结构及其磨蚀性能研究[D].宁波:宁波大学,2017:26-28.
    [29] NIU E W,LI L,LV G H,et al.Influence of substrate bias on the structure and properties of Zr N films deposited by cathodic vacuum arc[J]. Materials Science and Engineering,2007,A460-461:135-139.
    [30]陈朋灿,李伟,卢建富,等. Al N/Ti Si N纳米多层膜的微观组织和力学性能研究[J].功能材料,2015,46(11):11 080-11 084.
    [31]田灿鑫,周小东,周思华,等.电弧离子镀制备Ti Si N纳米复合涂层[J].表面技术,2015,44(8):15-20.
    [32]黎海旭,唐鹏,吴正涛,等.Ti Si N/Al Cr N纳米多层涂层高温热稳定性及摩擦学特性研究[J].机械工程学报,2018,54(6):32-40.
    [33]王振玉,徐胜,张栋. N2流量对HIPIMS制备Ti Si N涂层结构和力学性能的影响[J].金属学报,2014,55(5):540-546.
    [34]王芳,黄维刚,赵海波.氮气流量对(Ti,Al,Si,Cr)N超硬薄膜的结构与性能的影响[J].金属热处理,2014,39(2):66-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700