用户名: 密码: 验证码:
表面等离子体共振成像检测桃胶多糖与半乳糖凝集素-3的相互作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Detection of Interaction Between Peach-Gum Polysaccharides and Galectin-3 via Surface Plasmon Resonance Imaging
  • 作者:帅玉环 ; 齐攀 ; 李莹 ; 胡翠英 ; 蔡梦洁 ; 冉艳红 ; 李仕萍 ; 钟金钢
  • 英文作者:Shuai Yuhuan;Qi Pan;Li Ying;Hu Cuiying;Cai Mengjie;Ran Yanhong;Li Shiping;Zhong Jingang;Department of Physics,College of Science and Engineering,Jinan University;Department of Electronics Engineering,Guangdong Communication Polytechnic;Pre-University,Jinan University;Department of Bioengineering,College of Life Science and Technology,Jinan University;Department of Optoelectronic Engineering,College of Science and Engineering,Jinan University;
  • 关键词:表面光学 ; 表面等离子体共振成像 ; 数字全息 ; 桃胶多糖 ; 半乳糖凝集素-3 ; 分子间相互作用 ; 高通量
  • 英文关键词:optics at surfaces;;surface plasmon resonance imaging;;digital holography;;peach gum polysaccharide;;galectin-3;;biomolecular interaction;;high-throughput
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:暨南大学理工学院物理学系;广东交通职业技术学院电子工程系;暨南大学预科部;暨南大学生命科学技术学院生物工程学系;暨南大学理工学院光电工程系;
  • 出版日期:2018-12-06 20:43
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.644
  • 基金:国家自然科学基金(61605063);; 广东高校省级重点平台和重大科研项目(2017GKTSCX017);; 广东省自然科学基金(2018A030313912);; 广东省高等职业院校珠江学者岗位计划资助项目(2016年度)
  • 语种:中文;
  • 页:JGDJ201909030
  • 页数:8
  • CN:09
  • ISSN:31-1690/TN
  • 分类号:238-245
摘要
利用自组装的数字全息表面等离子体共振成像技术,分别检测了两种具有不同分子质量的桃胶多糖(PGP-1与PGP-2)与半乳糖凝集素-3的相互作用。制备了表面等离子体共振成像生物芯片,同时检测了具有不同浓度的桃胶多糖样品与半乳糖凝集素-3的结合过程,制作了标准曲线,并计算了相互作用的结合平衡常数。结果表明,两种具有不同分子质量的桃胶多糖可以直接结合半乳糖凝集素-3,其中PGP-1的结合平衡常数为8.36×10~5M~-,PGP-2的结合平衡常数为1.24×10~5M~-。结合曲线符合生物分子相互作用的规律,证明了该方法在多通量生物检测中的可行性。该方法实验装置简单、易操作、无需标记、成本低,在高通量分析技术中具有一定的应用前景。
        The interactions between galectin-3 and two types of peach-gum polysaccharides with different molecular weights(PGP-1 and PGP-2)were detected herein via self-assembly surface plasma resonance(SPR)imaging based on digital holography.Different concentrations of peach-gum polysaccharides and Galectin-3 were simultaneously detected on an SPR biochip prepared for detecting the concentrations.The standard curves were derived and the binding equilibrium constants of the reactions were calculated.The results show that the two types of peach-gum polysaccharides can directly bind to Galectin-3.The binding equilibrium constants of PGP-1 and PGP-2 are 8.36×10~5 and 1.24×10~5 M~-,respectively.The binding curves conform to the law of biomolecular interaction,demonstrating the feasibility of the proposed method in high-throughput biological detection.The proposed method can be easily controlled and is simple,label-free,and inexpensive.It is potentially applicable to the high-throughput microanalysis technology.
引文
[1] HuangXS. Theproperties, processing,development and utilization of peach gum[J].Special Wild Economic Animal and Plant Research,2004,26(1):47-51.黄雪松.桃胶的性质、加工及其开发利用[J].特产研究,2004,26(1):47-51.
    [2] Zheng Y L,Dong P P, Mei Q X.Progress in pharmacological action and clinical application of characteristic chemical constituents of peach gum[J].Lishizhen Medicine and Materia Medica Research,2017,28(7):1728-1730.郑依玲,董鹏鹏,梅全喜.桃胶特性化学成分药理作用及临床应用研究进展[J].时珍国医国药,2017,28(7):1728-1730.
    [3] Barondes S H,Castronovo V,Cooper D N W,et al.Galectins:a family of animalβ-galactoside-binding lectins[J].Cell,1994,76(4):597-598.
    [4] Kobayashi T,Shimura T,Yajima T,et al.Transient silencing of galectin-3expression promotes both in vitro and in vivo drug-induced apoptosis of human pancreaticcarcinomacells[J]. Clinical&Experimental Metastasis,2011,28(4):367-376.
    [5] Ahmed H,Alsadek D M M.Galectin-3as a potential target to prevent cancer metastasis[J].Clinical Medicine Insights-Oncology,2015,9:113-121.
    [6] Jepsen M D E,Sparvath S M,Nielsen T B,et al.Publisher correction:development of a genetically encodable FRET system using fluorescent RNA aptamers[J]. Nature Communications,2018,9:669.
    [7] Fields S,Song O K.A novel genetic system to detect protein-protein interactions[J].Nature,1989,340(6230):245-246.
    [8] Totten S M,Kullolli M,Pitteri S J.Multi-lectin affinitychromatographyforseparation,identification,and quantitation of intact protein glycoforms in complex biological mixtures[M]∥Totten S M,Kullolli M,Pitteri S J.Methods in molecular biology.New York:Springer,2017:99-113.
    [9] EngvallE, PerlmannP. Enzyme-linked immunosorbent assay(ELISA)quantitative assay of immunoglobulin G[J].Immunochemistry,1971,8(9):871-874.
    [10] Verma M S,Tsaloglou M N,Sisley T,et al.Sliding-strip microfluidic device enables ELISA on paper[J].Biosensors and Bioelectronics,2018,99:77-84.
    [11] Zhang Y P,Shi S Y,Guo J F,et al.On-line surface plasmonresonance-highperformanceliquid chromatography-tandemmassspectrometryfor analysis of human serum albumin binders from Radix Astragali[J].Journal of Chromatography A,2013,1293:92-99.
    [12] Nedelkov D,Nelson R W.Surface plasmon resonance mass spectrometry:recent progress and outlooks[J].Trends in Biotechnology,2003,21(7):301-305.
    [13] Liparoto S F,Ciardelli T L.Biosensor analysis of the interleukin-2 receptor complex[J]. Journal of Molecular Recognition,1999,12(5):316-321.
    [14] Majka J, Speck C. Analysis of protein-DNA interactions using surface plasmon resonance[M]∥Seitz H. Analytics of protein-DNA interactions.Advances in biochemical engineering/biotechnology,Berlin,Heidelberg:Springer,2007,104:13-36.
    [15] Shushama K N, Rana M M,Inum R,et al.Graphene coatedfiberopticsurfaceplasmon resonance biosensor for the DNA hybridization detection:simulationanalysis[J]. Optics Communications,2017,383:186-190.
    [16] Jain P K, El-Sayed I H, El-Sayed M A. Au nanoparticles target cancer[J].Nano Today,2007,2(1):18-29.
    [17] PatchingSG. Surfaceplasmonresonance spectroscopyforcharacterisationofmembrane protein-ligand interactions and its potential for drug discovery[J].Biochimica et Biophysica Acta(BBA)-Biomembranes,2014,1838(1):43-55.
    [18] Joshi S,Segarra-Fas A,Peters J,et al.Multiplex surface plasmon resonance biosensing andits transferability towards imaging nanoplasmonics for detection of mycotoxins in barley[J].The Analyst,2016,141(4):1307-1318.
    [19] Cooper M A.Optical biosensors in drug discovery[J].Nature Reviews Drug Discovery,2002,1(7):515-528.
    [20] Li Y,Qi P,Li S P,et al.A label-free surface plasmon resonance biochip for in situ detection of shrimp hemocyanin[J].Food Science,2017,38(12):234-239.李莹,齐攀,李仕萍,等.表面等离子体共振生物芯片无标记实时检测虾血蓝蛋白[J].食品科学,2017,38(12):234-239.
    [21] Campbell C, Kim G. SPR microscopy and its applicationstohigh-throughputanalysesof biomolecular binding events and their kinetics[J].Biomaterials,2007,28(15):2380-2392.
    [22] Fan Z K,Zhang Z C,Wang B Z,et al.Research progress of the photonic crystal fiber refractive idex sensor based on surface plasmon resonance[J].Laser&Optoelectronics Progress,2019,56(7):070004.范振凯,张子超,王保柱,等.基于表面等离子体共振效应光子晶体光纤折射率传感器的研究进展[J].激光与光电子学进展,2019,56(7):070004.
    [23] Tong K,Dang P,Wang M T,et al.Enhancement of sensitivity of photonic crystal fiber surface plasmon resonance biosensor using TiO2 film[J].Chinese Journal of Lasers,2018,45(6):0610002.童凯,党鹏,汪梅婷,等.采用TiO2薄膜增强光子晶体光纤表面等离子体共振生物传感器灵敏度的建模分析[J].中国激光,2018,45(6):0610002.
    [24] Zhang C L,Xin Z Q,Min C J,et al.Refractive index sensing imaging technology based on optical surface wave[J].Acta Optica Sinica,2019,39(1):0126006.张崇磊,辛自强,闵长俊,等.基于光学表面波的折射率传感成像技术[J].光学学报,2019,39(1):0126006.
    [25] Wong C L, Olivo M.Surfaceplasmon resonance imaging sensors:a review[J].Plasmonics,2014,9(4):809-824.
    [26] Li S P,Zhong J G.Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography[J].Biomedical Optics Express,2012,3(12):3190.
    [27] Otto A.Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J].Zeitschrift Für Physik a Hadrons and Nuclei,1968,216(4):398-410.
    [28] Fontana E, Kim J M, Llamas-Garro I,et al.Microfabricated Otto chip device for surface plasmon resonance-based optical sensing[J].Applied Optics,2015,54(31):9200.
    [29] Chen S J,Su Y D,Hsiu F M,et al.Surface plasmon resonance phase-shift interferometry:real-time DNA microarray hybridization analysis[J].Journal of Biomedical Optics,2005,10(3):034005.
    [30] Schnars U,Jüptner W P O.Digital recording and numericalreconstructionofholograms[J].Measurement Science and Technology,2002,13(9):R85-R101.
    [31] Skidmore G L,Chase H A.Two-component protein adsorption to the cation exchanger S Sepharose?FF[J].Journal of Chromatography A,1990,505(2):329-347.
    [32] Qi P,Zhong J G,Ma X,et al.Real time and labelfree research on the detection of pituitary adenylate cyclase-activating polypeptide based on surface plasmonresonancetechnique[J]. Clinical Laboratory,2018,64(1/2):113-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700