用户名: 密码: 验证码:
脉冲梯度场核磁共振技术在多糖类凝胶中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Applications of Pulse Field Gradient Nuclear Magnetic Resonance Technology in Polysaccharide Gels
  • 作者:代博娜 ; 吴节莉
  • 英文作者:DAI Bo-na;WU Jie-li;Instrumental Analysis Center,Shanghai Jiao Tong University;
  • 关键词:脉冲梯度场核磁共振技术 ; 自扩散系数 ; 分子动力学 ; 多糖 ; 凝胶 ; 探针分子 ; 网孔尺寸
  • 英文关键词:Pulse field gradient nuclear magnetic resonance(PFG NMR);;Self-diffusion coefficient(D);;Molecular dynamics;;Polysaccharide;;Gel;;Probe molecule;;Network size
  • 中文刊名:GFZT
  • 英文刊名:Polymer Bulletin
  • 机构:上海交通大学分析测试中心;
  • 出版日期:2018-02-15
  • 出版单位:高分子通报
  • 年:2018
  • 期:No.226
  • 基金:烟草行业卷烟烟气重点实验室开放基金
  • 语种:中文;
  • 页:GFZT201802001
  • 页数:8
  • CN:02
  • ISSN:11-2051/O6
  • 分类号:4-11
摘要
深入理解凝胶中分子的自扩散行为有助于聚合物凝胶的基础研究、食品质地的改善、凝胶类药物递迭系统及分离膜等材料的开发。通过脉冲梯度场核磁共振技术(PFG NMR)测量自扩散系数(D)是阐明凝胶体系中分子动力学的有效手段。探针聚合物在随机介质如溶胶或凝胶中的自扩散取决于基质的结构和迁移率、探针分子的流体力学性质及探针分子与基质之间的相互作用。探针分子与凝胶之间不存在直接分子间相互作用时,其在凝胶中的自扩散主要受流体力学相互作用的影响,因此通过引入并研究探针分子在凝胶中的自扩散行为,可以间接获取凝胶网络结构的信息。本文第一部分简述了自扩散现象及自扩散系数测量技术;第二部分着重介绍了脉冲梯度场核磁共振技术测量自扩散系数的原理;第三部分结合具体的实验方法及实例重点介绍PFG NMR如何被应用于研究多糖类凝胶形成过程中多糖分子构象及动力学的变化;然后介绍如何通过探针分子在凝胶中的自扩散行为评价凝胶的网孔尺寸的变化;最后,通过对探针分子自扩散系数时间依存性的考察,评价其在凝胶相分离研究中的应用价值。
        A better understanding of the diffusional behavior of molecules in gels is required for fundamental research work on polymer gels as well as for practical work such as developments of drug delivery systems and separation membranes based on gels.The diffusion coefficient(D)obtained by pulse field gradient nuclear magnetic resonance(PFG NMR)is an effective means to elucidate the dynamics in gel systems.The measurements of Dfor probe molecules in gels reveal the mobility of the molecules and provide information about the gel network size.In the first section of this article,the selfdiffusion phenomenon and the self-diffusion coefficient measurement techniques are briefly introduced.In the second section,we introduced the principle of self-diffusion coefficient measurement by PFG NMR.In the third section,the applications of PFG NMR technology in polysaccharide gel research are introduced.
引文
[1]刘志明,孙清瑞,王欣,王雯.食品科学,2011,32(8):327.
    [2]刘俊山,李清华,朱丹实,王勃,何余堂,马涛,刘贺.食品科学,2015,36(1):27.
    [3]Zhang H,Nishinari K,Williams M A K,Foster T J,Norton I T.Int J Biol Macromol,2002,30:7.
    [4]Yamazaki E,Sago T,Kasubuchi Y,et al.Carbohydr Polym,2013,94(1):555.
    [5]Brenner T,Tuvikene R,Fang Y,et al.Food Hydrocolloid,2015,44:136.
    [6]Ngugen B T,Nicolai T,Benyyahia L.Carbohydr Polym,2014,112:10.
    [7]Dai B,Matsukawa S.Food Hydrocolloid,2012,26(1):181.
    [8]Dai B,Matsukawa S.Carbohydr Res,2013,365:38.
    [9]Lisitza N,Huang X,Hatabua H,Patza S.Phys Chem Chem Phys,2010,12:14169.
    [10]Matsukawa S,Sagae D,Mogi A.Prog Polym Polym Sci,2009,136:171.
    [11]Zhang Q,Matsukawa S,Watanabe T.Food Hydrocolloid,2004,18:441.
    [12]Walderhaug H,S9derman O,Topgaard D.Prog Nucl Mag Res Sp,2010,56:406.
    [13]曾蓉.核磁共振对温敏性壳聚糖水凝胶机理研究的探索.上海:复旦大学硕士学位论文,2006.
    [14]Okada R,Matsukawa S,Watanabe T.J Mol Struct,2002,602~603:473.
    [15]Hills B P,Cano C,Belton P S.Macromol,1991,24:2944.
    [16]Abeltt S,Lillford P J,Baghdadi S M A,Derbyshire W.A C S Symp Ser,1976,34:344.
    [17]Lewis G P,Derbyshire W,Abeltt S,et al.Carbohydr Res,1987,160:397.
    [18]McConville P,Pope J M.Polymer,2001,42:3559.
    [19]Baldursdóttir S,Kjniksen A,Nystr9m B.Eur Polym J,2006,42:3050.
    [20]Zhao Q,Matsukawa S.Carbohydr Polym,2013,95(1):458.
    [21]Matsukawa S.Modern Magnetic Resonance,Graham A.Webb(ed),Dordrecht,Netherlands:Springer,2006,part I:125.
    [22]Stejskal E,Tanner J.J Chem Phys,1965,42:288.
    [23]Johnson Jr.C.Prog Nucl Mag Res Sp,1999,34:203.
    [24]Price W S.NMR studies of translational motion(1st ed),2009,New York:Cambridge University Press.
    [25]Levitt M H.Spin Dynamics:Basics of Nuclear Magnetic Resonance(2nd ed),2010,Singapore:John Wiley&Sons Ltd.
    [26]Dea I C A,McKinnon A A,Rees D A.J Mol Biol,1972,68:153.
    [27]Hayashi K,Kinoshita K,Kuwano M,et al.Polym J,1978,10(5):485.
    [28]Ablett S,Lillford P J,Baghdadi S M,Derbyshire W.J Colloid Interf Sci,1978,67(2):355.
    [29]Arnott S,Fulmer S,Scott W E.J Mol Biol,1974,90:269.
    [30]Petit J,Zhu X.Macromol,1996,29:70.
    [31]Doi M,Edwards S F.The theory of polymer dynamics(1st ed),1986,UK:Oxford University Press(Chapter 3).
    [32]Cukier R.Macromol,1984,17:252.
    [33]Wang Z,Yang K,Brenner T,et al.Food Hydrocolloid,2014,36:196.
    [34]Zhang H,Nishinari K,Williams M A,et al.Int J Biol Macromol,2002,30:7.
    [35]Yamazaki E,Sago T,Kasubuchi Y,et al.Carbohydr Polym,2013,94(1):555.
    [36]De Gennes PG.Macromol,1976,9:594.
    [37]Matsukawa S,Ando I.Macromol,1996,29:7136.
    [38]Najia L,Schiller J,Kaufmann J,et al.Biophys Chem,2003,104:131.
    [39]Cavadini S,Dittmer J,Antonijevic S,Bodenhausen G.J Am Chem Soc,2005,127(45):15744.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700