用户名: 密码: 验证码:
Ti_(44)Ni_(47)Nb_9合金粉末球磨工艺的优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of ball milling process for Ti_(44)Ni_(47)Nb_9 alloy powder
  • 作者:刘俊伟 ; 万俊 ; 鲁世强 ; 刘军
  • 英文作者:LIU Jun-wei;WAN Jun;LU Shi-qiang;LIU Jun;Jiangxi Key Laboratory of Microstructure Control of Metal Materials,Nanchang Hangkong University;
  • 关键词:机械合金化 ; 球磨工艺 ; Ti_(44)Ni_(47)Nb_9合金
  • 英文关键词:mechanical alloying;;ball milling process;;Ti_(44)Ni_(47)Nb_9 alloy
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:南昌航空大学江西省金属材料微结构调控重点实验室;
  • 出版日期:2019-06-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.228
  • 基金:国家自然科学基金(51504138,51674118);; 航空动力基金(6141B090573);; 中国航空基金(2016ZF56027,2017ZE56016);; 江西省科技支撑计划(20141122040007);; 江西省自然科学基金(20171BAB206002);; 江西教育厅科技项目(GJJ150726);; 江西省金属材料微结构调控重点实验室开放课题(EJ201701515);; 江西省“百人远航工程”项目;; 江西省省级研究生教改课题(JXYJG-2016-133)
  • 语种:中文;
  • 页:JSCL201906010
  • 页数:7
  • CN:06
  • ISSN:11-4545/TG
  • 分类号:87-93
摘要
采用机械合金化的方法制备了Ti_(44)Ni_(47)Nb_9形状记忆合金粉末,采用X射线衍射(XRD)、扫描电镜(SEM)分析和能量色散光谱(EDS)等分析了球磨工艺参数对粉末非晶度和颗粒尺寸的影响,得出了最佳的球磨工艺参数。分析了球磨转速、球料比以及球磨时间等参数对机械合金化过程的影响规律。结果表明:合金粉末在球磨60 h时已出现大部分非晶相,100 h时已接近完全非晶化。机械合金化制备的Ti_(44)Ni_(47)Nb_9合金粉末尺寸随球磨时间的增加先迅速减小后在60 h左右趋于稳定,在球磨速率不变的条件下,随着球磨时间增长,粉末的平均粒径大幅度减小,且由棱角分明的不规则体逐渐变化为球形体,在球磨初期(10~30 h)存在颗粒团聚的现象,随球磨时间延长(30 h后)该现象逐渐消失。从粉末颗粒尺寸、分布状况、圆滑程度等方面分析考虑:在球磨时间为100 h的条件下,当球磨转速为200 r/min、球料比为10∶1时机械合金化效果最佳。
        Ti_(44)Ni_(47)Nb_9 shape memory alloy powders were prepared by mechanical alloying, and the effects of milling parameters on amorphous degree and particle size of the powder were analyzed by means of X-ray diffraction(XRD), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) analysis. The optimum milling parameters were obtained. The effects of milling speed, ball-to-batch ratio and milling time on mechanical alloying process were analyzed. The results show that most of the amorphous phases have appeared in the alloy powder after milling for 60 h and are close to the complete amorphous phase at 100 h. The powder size of Ti_(44)Ni_(47)Nb_9 alloy prepared by mechanical alloying first decreases rapidly with the increase of milling time and then tends to stabilize at about 60 h. Under the condition of constant milling rate, the average particle size of the powder decreases greatly with the increase of milling time. At the beginning of milling(10-30 h), the phenomenon of particle agglomeration is observed, which is gradually changed from angular irregular body to ball shape, and the phenomenon disappeares with the prolongation of milling time(more than 30 h). From the aspects of particle size, distribution, smoothness and so on, it is considered that the mechanical alloying effect is the best when the milling time is 100 h with milling speed of 200 r/min and the ratio of ball-to-batch of 10∶1.
引文
[1] Zhu Y,Wang H,Gao Z,et al.Martensitic transformation and microstructure of dual-phase Ti44Ni47Nb9 shape memory alloy after high-velocity impact[J].Materials Characterization,2016,122(11):162-169.
    [2] Novák P,Moravec H,Vojtech V.Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering[J].Materiali in Tehnologije,2017,51(1):141-144.
    [3] Antunes A S,Tosetti J P V,Otubo J.High shape recovery Ni-Ti SMA wire produced from electron beam melted ingot[J].Journal of Alloys and Compounds,2013,577(12):265-267.
    [4] 张桂银,查五生,陈秀丽,等.机械球磨技术在材料制备中的应用[J].粉末冶金技术,2018,36(4):315-318.ZHANG Gui-yin,ZHA Wu-sheng,CHEN Xiu-li,et al.Application of mechanical ball-milling technology in material preparation[J].Powder Metallurgy Technology,2018,36(4):315-318.
    [5] Goyal A,Soni P R.Functionally graded nanocrystalline silicon powder by mechanical alloying[J].Materials Letters,2017,214(3):111-114.
    [6] 陈津文,吴年强,李志章.描述机械合金化过程的理论模型[J].材料科学与工程学报,1998(1):19-23.CHEN Jin-wen,WU Nian-qiang,LI Zhi-zhang.Modeling of mechanical alloying process[J].Journal of Materials Science and Engineering,1998(1):19-23.
    [7] Zhu Y Y,He Y H,Li Q.Ti-Al-Zr-B-Y amorphous alloy powders prepared by mechanical alloying[J].Advanced Materials Research,2015,1095(3):222-225.
    [8] Gu Y W,Goh C W,Goi L S,et al.Solid state synthesis of nanocrystalline and/or amorphous 50Ni-50Ti alloy[J].Materials Science and Engineering A,2005,392(1/2):222-228.
    [9] Sadrnezhaad S K,Selahi A R.Effect of mechanical alloying and sintering on Ni-Ti powders[J].Advanced Manufacturing Processes,2004,19(3):475-486.
    [10] Rostami A,Bagheri G A,Sadrnezhaad S K.Microstructure and thermodynamic investigation of NiTi system produced by mechanical alloying[J].Physica B:Physics of Condensed Matter,2019,552(7):214-220.
    [11] Shi J,Zheng A F,Lin Z H,et al.Effect of process control agent on alloying and mechanical behavior of L2 1 phase Ni-Ti-Al alloys[J].Materials Science and Engineering A,2019,740-741(11):130-136.
    [12] 张冠群,王智,胡愿,等.高能球磨Ti55.5Cu18.5Ni17.5Al8.5合金非晶化研究[J].稀有金属材料与工程,2018,47(5):1550-1554.ZHANG Guan-qun,WANG Zhi,HU Yuan,et al.Amorphization of Ti55.5Cu18.5Ni17.5Al8.5 alloy by high energy ball milling[J].Rare Metal Materials and Engineering,2018,47(5):1550-1554.
    [13] 张修超,蔡晓兰,周蕾,等.高能球磨工艺对B4C/Al复合粉体结构演变及分布均匀性的影响[J].材料导报,2018,32(15):2653-2658.ZHANG Xiu-chao,CAI Xiao-lan,ZHOU Lei,et al.Effect of ball milling technics on structural evolution and uniform distribution of B4C/Al composite powder[J].Materials Review,2018,32(15):2653-2658.
    [14] 李艳春,宋美慧,张煜,等.球磨工艺对钛合金粉末颗粒尺寸的影响[J].化学工程师,2017,31(6):13-15.LI Yan-chun,SONG Mei-hui,ZHANG Yu,et al.Influence of the ball mill process on titanium alloy powder particle size[J].Chemical Engineer,2017,31(6):13-15.
    [15] Cai W,Meng X L,Zhao L C.Recent development of TiNi-based shape memory alloys[J].Current Opinion in Solid State and Materials Science,2005,9(6):296-302.
    [16] Oleszak D,Kolesnikov D,Kulik T.Ni59Zr20Ti16Si5 bulk amorphous alloy obtained by mechanical alloying and powder consolidation[J].Materials Science and Engineering A,2007,449(3):1127-1130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700