用户名: 密码: 验证码:
金属纳米颗粒对污水处理系统毒性的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Toxicity of Metal Nanoparticles to Sewage Treatment System
  • 作者:魏向阳 ; 陈猷鹏
  • 英文作者:WEI Xiangyang;CHEN Youpeng;Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Chongqing University;
  • 关键词:金属纳米颗粒 ; 污水处理系统 ; 毒性机制
  • 英文关键词:metal nanoparticles;;sewage treatment system;;toxicity mechanism
  • 中文刊名:ZSJS
  • 英文刊名:Water Purification Technology
  • 机构:中国科学院重庆绿色智能技术研究院;中国科学院大学;重庆大学;
  • 出版日期:2019-06-01
  • 出版单位:净水技术
  • 年:2019
  • 期:v.38;No.206
  • 语种:中文;
  • 页:ZSJS2019S1035
  • 页数:5
  • CN:S1
  • ISSN:31-1513/TQ
  • 分类号:129-133
摘要
随着纳米科技快速发展,大量金属纳米颗粒不可避免地进入到污水处理系统中。该研究总结了金属纳米颗粒在污水处理系统中的分布,分析了其对污水处理系统的COD降解、脱氮除磷效率和微生物群落的影响及潜在机理,为今后污水处理系统纳米颗粒风险评估和应急管理提供了基础和理论支持。
        With the rapid development of nanotechnology,metal nanoparticles inevitably enter the sewage treatment system in large quantities.This study summarizes the distribution of metal nanoparticles in sewage treatment system,and analyzes their effects on COD degradation,nitrogen and phosphorus removal efficiencies and microbial community of wastewater treatment system,as well as their potential mechanisms.It provids fundamental and theoretical support for nanoparticle risk assessment and emergency regulation of sewage treatment system in the future.
引文
[1]MA H,WILLIAMS P L,DIAMOND S A.Ecotoxicity of manufactured ZnO nanoparticles-A review[J].Environmental Pollution,2013,172(1):76-85.
    [2]ODZAK N,KISTLER D,BEHRA R,et al.Dissolution of metal and metal oxide nanoparticles in aqueous media[J].Environmental Pollution,2014,191:132-138.
    [3]PANG C,SELCK H,MISRA S K,et al.Effects of sediment-associated copper to the deposit-feeding snail,Potamopyrgus antipodarum:A comparison of Cu added in aqueous form or as nanoand micro-CuO particles[J].Aquatic Toxicology,2012,106(2):114-122.
    [4]XIA J,ZHAO H Z,LU G H.Effects of selected metal oxide nanoparticles on multiple biomarkers in Carassius auratus[J].Biomedical&Environmental Sciences,2013,26(9):742-749.
    [5]AMIR S,MERLINA M H,HAMDI H,et al.Fate of phthalic acid esters during composting of both lagooning and activated sludges[J].Process Biochemistry,2005,40(6):2183-2190.
    [6]MITRANO D M,MOTELLIER S,CLAVAGUERA S,et al.Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products[J].Environment International,2015,77:132-147.
    [7]LAZAREVA A,KELLER A A.Estimating potential lLife cycle releases of engineered nanomaterials from wastewater treatment plants[J].Acs Sustainable Chemistry,2014,2(7):1656-1665.
    [8]Untted Nations Environment Programme.Emerging Challengesnanotechnology and the environment[EB/OL].www.statewatch.org/news/2007/feb/un-nano-report.pdf.
    [9]GARNER K L,KELLER A A.Emerging patterns for engineered nanomaterials in the environment:a review of fate and toxicity studies[J].Journal of Nanoparticle Research,2014,16(8):2503.
    [10]PAUL W,GUIXUE S,KIRIL H,et al.Occurrence and removal of titanium at full scale wastewater treatment plants:Implications for Ti02 nanomaterials[J].Journal of Environmental Monitoring Jem,2011,13(5):1195-1203.
    [11]HOU L,LI K,DING Y,et al.Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction[J].Chemosphere,2012,87(3):248-252.
    [12]PUAY N Q,QIU G,TING Y P.Effect of Zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor[J].Journal of Cleaner Production,2015(3):139-145.
    [13]BARTON L E,MELANIE A,MARIE B,et al.Transformation of pristine and citrate-functionalized CeO_2 nanoparticles in a laboratory-scale activated sludge reactor[J].Environmental Science&Technology,2014,48(13):7289-7296.
    [14]HAT R,WANG Y,WANG X,et al.Impacts of multiwalled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge[J].Plos One,2014,9(9):e107345.
    [15]MA R,LEVARD C,JUDY J D,et al.Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids[J].Environmental Science&Technology,2014,48(1):104-112.
    [16]MA Y,METCH J W,VEJERANO E P,et al.Microbial community response of nitrifying sequencing batch reactors to silver,zerovalent iron,titanium dioxide and cerium dioxide nanomaterials[J].Water Research,2015(68):87-97.
    [17]YU Y,MENGYAN L,CAMILA M,et al.Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge[J].Environmental Toxicology&Chemistry,2015,33(10):2234-2239.
    [18]HOU L,XIA J,LI K,et al.Removal of ZnO nanoparticles in simulated wastewater treatment processes and its effects on COD and NH_4~+-N reduction[J].Water Science&Technology,2013,67(2):254-260.
    [19]GOMEZ-RIVERA F,FIELD J A,BROWN D,et al.Fate of cerium dioxide(CeO_2)nanoparticles in municipal wastewater during activated sludge treatment[J].Bioresource Technology,2012,108(2):300-304.
    [20]GARTISER S,FLACH F,NICKEL C,et al.Behavior of nanoscale titanium dioxide in laboratory wastewater treatment plants according to OECD 303 A[J].Chemosphere,2014,104(3):197-204.
    [21]WANG Y,WESTERHOFF P,HRISTOVSKI K D. Fate and biological effects of silver,titanium dioxide,and C_(60)(fullerene)nanomaterials during simulated wastewater treatment processes[J].Journal of Hazardous Materials,2012(21-22):16-22.
    [22]WU J,ZHU G,RAN Y.Fates and impacts of nanomaterial contaminants in biological wastewater treatment system:A review[J].Water Air&Soil Pollution,2018,229(1):9-9.
    [23]CHEN J,TANG Y Q,LI Y,et al.Impacts of different nanoparti-cles on functional bacterial community in activated sludge[J].Chemosphere,2014,104(3):141-148.
    [24]ZHANG C,LIANG Z,HU Z.Bacterial response to a continuous long-term exposure of silver nanoparticles at sub-ppm silver concentrations in a membrane bioreactor activated sludge system[J].Water Research,2014,50(3):350-358.
    [25]ALUTO C L,GUNSCH C K.Assessing the effects of silver nanoparticles on biological nutrient removal in bench-scale activated sludge sequencing batch reactors[J].Environmental Science&Technology,2014,48(2):970-976.
    [26]WANG S,GAO M,SHE Z,et al.Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal,microbial activity and microbial community of a sequencing batch reactor[J].Bioresource Technology,2016(18):428-436.
    [27]ZHENG X,WU R,CHEN Y.Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J].Environmental Science&Technology,2011,45(7):2826-2832.
    [28]SONG Y-X,CHAI L-Y,TANG C-J,et al.Influence of ZnO nanoparticles on anammox granules:The inhibition kinetics and mechanism analysis by batch assays[J].Biochemical Engineering Journal,2018(sl):122-129.
    [29]ZHENG X,CHEN Y,WU R.Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge[J].Environmental Science&Technology,2011,45(17):7284.
    [30]CHEN Y,SU Y,ZHENG X,et al.Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure[J].Water Research,2012,46(14):4379-4386.
    [31]ZHENG X,SU Y,CHEN Y.Acute and chronic responses of activated sludge viability and performance to silica nanoparticles[J].Environmental Science&Technology,2012,46(13):7182.
    [32]LIANG Z,DAS A,HU Z.Bacterial response to a shock load of nanosilver in an activated sludge treatment system[J].Water Research,2010,44(18):5432-5438.
    [33]CHEN Y,CHEN H,ZHENG X,et al.The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms[J].Journal of Hazardous Materials,2012(18):88-94.
    [34]YU B,HUANG X,ZHANG D,et al.Response of sludge fermentation liquid and microbial community to nano zero-valent iron exposure in a mesophilic anaerobic digestion system[J].Royal Society of Chemistry Advances,2016(29):24236-24244.
    [35]GONZALEZ-ESTRELLA J,SIERRA-ALVAREZ R,FIELD J A.Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge[J].Journal of Hazardous Materials,2013(6):278-285.
    [36]HE C S,HE P P,YANG H Y,et al.Impact of zero-valent iron nanoparticles on the activity of anaerobic granular sludge:From macroscopic to microcosmic investigation[J].Water Research,2017(24):32-40.
    [37]MU H,ZHENG X,CHEN Y,et al.Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment[J].Environmental Science&Technology,2012,46(11):5997.
    [38]王大力,郁建桥,高雅,等.金属和氧化物纳米颗粒对细菌毒性的研究进展[J].安全与环境学报,2012,12(1):5-10.
    [39]ARAKHA M,SALEEM M,MALLICK B C,et al.The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle[J].Scientific Reports,2015(4):9578.
    [40]LI M,ZHU L,LIN D.Toxicity of ZnO nanoparticles to Escherichia coli:Mechanism and the influence of medium components[J].Environmental Science&Technology,2011,45(5):1977-1983.
    [41]LEFEVRE E,BOSSA N,WIESNER M R,et al.A review of the environmental implications of in situ remediation by nanoscale zero valent iron(nZVI):Behavior,transport and impacts on microbial communities[J].Science of the Total Environment,2016(18):889-901.
    [42]HOU J,YOU G,XU Y,et al.Impacts of CuO nanoparticles on nitrogen removal in sequencing batch biofilm reactors after shortterm and long-term exposure and the functions of natural organic matter[J].Environmental Science and Pollution Research,2016,23(21):22116-22125.
    [43]HOU J,YOU G,XU Y,et al.Effects of Ce02 nanoparticles on biological nitrogen removal in a sequencing batch biofilm reactor and mechanism of toxicity[J].Bioresource Technology,2015(9):73-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700