用户名: 密码: 验证码:
库车坳陷深层裂缝性砂岩气藏可压裂性评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fracability Evaluation of Deep-Burial Fractured Sandstone Gas Reservoir in Kuqa Depression
  • 作者:张辉 ; 尹国庆 ; 王志民 ; 王海应
  • 英文作者:ZHANG Hui;YIN Guoqing;WANG Zhimin;WANG Haiying;Research Institute of Exploration and Development,Tarim Oilfield Company, PetroChina;
  • 关键词:库车坳陷 ; 裂缝性砂岩储集层 ; 地应力 ; 天然裂缝 ; 脆性 ; 断裂韧性 ; 可压裂性
  • 英文关键词:Kuqa depression;;fractured sandstone reservoir;;in-situ stress;;natural fracture;;brittleness;;fracture toughness;;fracability
  • 中文刊名:XJSD
  • 英文刊名:Xinjiang Petroleum Geology
  • 机构:中国石油塔里木油田分公司勘探开发研究院;
  • 出版日期:2019-02-01
  • 出版单位:新疆石油地质
  • 年:2019
  • 期:v.40;No.196
  • 基金:国家科技重大专项(2016ZX05051);; 中国石油科技重大专项(2018E-1803)
  • 语种:中文;
  • 页:XJSD201901018
  • 页数:8
  • CN:01
  • ISSN:65-1107/TE
  • 分类号:112-119
摘要
库车坳陷深层裂缝性砂岩气藏经历强挤压构造变形,储集层地应力高,且各向异性强,同时天然裂缝广泛发育,作用于天然裂缝面的地应力严重影响了储集层渗透性能和流体的流动。为优化气井压裂工程方案,从储集层地应力场、裂缝剪应力与有效正应力之比、岩石脆性及断裂韧性等4个方面,对库车坳陷深层裂缝性砂岩储集层可压裂性进行了评价。根据岩石力学实验、地应力场建模及天然裂缝剪切变形能力对压后产能的影响分析,建立了一种适用于高应力背景裂缝性砂岩储集层的可压裂性指数评价模型。相对基于岩石脆性和断裂韧性可压裂性评价模型,其更多考虑了现今地应力场和天然裂缝对压裂效果的影响,对高应力背景裂缝性致密储集层井间和层间压裂难易程度反映更敏感,可用于压裂段优选、射孔位置确定、注入压力选择、泵注程序优化等。可压裂性评价技术在库车坳陷气井中成功应用30井次,为需要储集层改造气井的定量化压裂方案优化提供了依据。
        The deep-burial fractured sandstone reservoir in Kuqa depression has experienced strong compressional structure deformation,which is characterized by high magnitude of in-situ stress, strong anisotropy and widely developed of natural fractures. The in-situ stress on natural fracture surface seriously impacts the permeability and fluid flowing in the reservoir. To optimize fracturing stimulation program for gas wells,a research on fracability evaluation is conducted in terms of four geomechanics parameters including in-situ stress, shear-to-effective normal stress ratio on natural fracture, rock brittleness and fracture toughness for the deep-burial fractured sandstone reservoir in Kuqa depression. Based on rock mechanics testing, stress field modeling and analysis of the influence of shear deformation ability of natural fractures on gas well performance after fracturing, a fracability index evaluation model suitable for the fractured tight sandstone with high stress is established. Compared with other fracability models based on rock brittleness and fracture toughness, the new model considers the influences of present in-situ stress and natural fracture on fracturing effect, which is more sensitive to the well-to-well and layer-to-layer fracabilities in the fractured tight reservoir with strong stress, and can be used to optimize fracturing interval, determine perforation location, select injection pressure and optimize pump injection procedure, etc. The fracability evaluation technology has been successfully applied in 30 gas wells in Kuqa depression, which provides basis for quantitative fracturing program optimization in the gas wells which need to be stimulated.
引文
[1]王招明,李勇,谢会文,等.库车前陆盆地超深油气地质理论与勘探实践[M].北京:石油工业出版社,2017.WANG Zhaoming,LI Yong,XIE Huiwen,et al. UItra deep oil andgas geological theory and exploration practice in Kuche foreland ba-sin[M]. Beijing:Petroleum Industry Press,2017.
    [2]张惠良,张荣虎,杨海军,等.构造裂缝发育型砂岩储层定量评价方法及应用——以库车前陆盆地白垩系为例[J].岩石学报,2012,28(3):827-835.ZHANG Huiliang,ZHANG Ronghu,YANG Haijun,et al. Quantita-tive evaluation methods and applications of tectonic fracture devel-oped sand reservoir:a cretaceous example from Kuqa foreland basin[J]. Acta Petrologica Sinica,2012,28(3):827-835.
    [3]王招明.塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J].天然气地球科学,2014,25(2):153-166.WANG Zhaoming. Formation mechanism and enrichment regulari-ties of Kelasu subsalt deep large gas field in Kuqa depression,Tarimbasin[J]. Natural Gas Geoscience,2014,25(2):153-166.
    [4] ZHANG Hui,QIU Kaibin,FULLER J,et al. Geomechanical-evalua-tion enabled successful stimulation of a HPHT tight gas reservoir inwestern China[J]. SPE Drilling&Completion,2015,30(4):274-294.
    [5]唐颖,邢云,李乐忠,等.页岩储层可压裂性影响因素及评价方法[J].地学前缘,2012,19(5):356-363.TANG Ying,XING Yun,LI Lezhong,et al. Influence factors andevaluation methods of the gas shale fracability[J]. Earth ScienceFrontiers,2012,19(5):356-363.
    [6]袁俊亮,邓金根,张定宇,等.页岩气储层可压裂性评价技术[J].石油学报,2013,34(3):523-527.YUAN Junliang,DENG Jingen,ZHANG Dingyu,et al. Fracabilityevaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica,2013,34(3):523-527.
    [7] SU K,ONAISI A,GARNIER A. A comprehensive methodology ofevaluation of the fracabililty of a shale gas play[R]. Denver,Colora-do,USA:Unconventional Resources Technology Conference,2014.
    [8] JIN X,SHAH S N,ROEGIERS J,et al. Fracability evaluation inshale reservoirs-an integrated petrophysics and geomechanics ap-proach[R]. The Woodlands,Texas,USA:SPE Hydraulic FracturingTechnology Conference,SPE 168589,2014.
    [9] MULLEN M,ENDERLIN M. Fracability index-more than just cal-culation rock properties[R]. San Antonio,Texas,USA:SPE AnnualTechnical Conference,SPE 159755,2012.
    [10]孙建孟,韩志磊,秦瑞宝,等.致密气储层可压裂性测井评价方法[J].石油学报,2015,36(1):74-80.SUN Jianmeng,HAN Zhilei,QIN Ruibao,et al. Log evaluationmethod of fracturing performance in tight gas reservoir[J]. ActaPetrolei Sinica,2015,36(1):74-80.
    [11]刁海燕.泥页岩储层岩石力学特性及脆性评价[J].岩石学报,2013,29(9):3 300-3 306.DIAO Haiyan. Rock mechanical properties and brittleness evalua-tion of shale reservoir[J]. Acta Petrologica Sinica,2013,29(9):3 300-3 306.
    [12] JARVIE D M,HILL R J,RUBLE T E,et al. Unconventional shale-gas system:the Mississippian Barnett shale of north-central Texasas one model for thermogenic shale-gas assessment[J]. AAPG Bulletin,2007,91(4):475-499.
    [13] RICKMAN R,MULLEN M,PETRE J,et al. A practical use ofshale petrophysics for stimulation design optimization:all shaleplays are not clones of the Barnett shale[R]. SPE 115258,2008.
    [14] BRUNER K R,SMOSNA R. A comparative study of the Mississip-pian Barnett shale,Fort Worth basin,and Devonian Marcellusshale,Appalachian basin[R]. Pittsburgh,USA:National EnergyTechnology Laboratory Report,2011.
    [15] BREYER J A,ALSLEBEN H,ENDERLIN M B. Predicting fraca-bility in shale reservoir[R]. Houston,Texas,USA:AAPG AnnualConvention&Exhibition,2011.
    [16] OLSON J. Multi-fracture propagation modeling:applications to hy-draulic fracturing in shales and tight gas sands[R]. San Francisco,CA,USA:42nd US Rock Mechanics Symposium,2008.
    [17] CIPOLLA C L,WARPINSKI N R,MAYERHOFER M J. The rela-tionship between fracture complexity,reservoir properties,and frac-ture treatment design[J]. SPE Production&Operations,2010,25(4):276-291.
    [18] HENNINGS P,ALLWARDT P,PAUL P,et al. Relationship be-tween fractures,fault zones,stress,and reservoir productivity in theSuban gas field,Sumatra,Indonesia[J]. AAPG Bulletin,2012,96(4):753-772.
    [19] ZOBACK M D,KOHLI A,DAS I,et al. The importance of slow slipon faults during hydraulic fracturing stimulation of gas shale reser-voirs[R]. SPE 155476-MS,2012.
    [20] JOHRI M,ZOBACK M D. The evolution of stimulated reservoir vol-ume during hydraulic stimulation of shale gas formations[R]. Den-ver,Colorado,USA:Unconventional Resources Technology Confer-ence,2013.
    [21] YANG H J,ZHANG H,CAI Z Z,et al. The relationship betweengeomechanical response of natural fractures and reservoir produc-tivity in KS2 tight sandstone gas field,Tarim basin,China[R].SPE 176840,2015.
    [22]卓勤功,赵孟军,邹开真,等.中国中西部前陆冲断带油气分布规律及勘探领域[J].新疆石油地质,2018,39(2):125-133.ZHUO Qingong,ZHAO Mengjun,ZOU Kaizhen,et al. Petroleumdistribution in foreland thrust belts and its exploration areas in mid-west China[J]. Xinjiang Petroleum Geology,2018,39(2):125-133.
    [23] GALE J F W,REED R M,HOLDER J. Natural fractures in theBarnett shale and their importance for hydraulic fracture treatments[J]. AAPG Bulletin,2007,91(4):603-622.
    [24] MONTGOMERY S L,JARVIE D M,BOWKER K A,et al. Missis-sippian Barnett shale,Fort Worth basin,north central Texas:Gas-shale play with multi-trillion cubic foot potential[J]. AAPG Bulle-tin,2005,89(2):155-175.
    [25] GRIGG M. Emphasis on mineralogy and basin stress for gas shaleexploration[R]. Perth,Australia:SPE Meeting on Gas Shale Tech-nology Exchange,2004.
    [26] HUBBERT M K,WILLIS D G. Mechanics of hydraulic fracturing[J]. Petroleum Transactions,1957,210:153-168.
    [27] ZHANG T,FANG X,SONG C. Cenozoic tectonic deformation anduplift of the South Tian Shan:implications from magnetostratigra-phy and balanced cross-section restoration of the Kuqa depression[J]. Tectonophysics,2014,628:172-187.
    [28] ZOBACK M D. Reservoir geomechanics[M]. Cambridge:Cam-bridge University Press,2007.
    [29] PRATS M. Effect of burial history on the subsurface horizontalstresses of formation having different material properties[J]. SPEJournal,1981,21(6):658-662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700