用户名: 密码: 验证码:
航天员虚拟训练中运动物体抓持规则研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Grasping Rules of Moving Objects in Astronaut Virtual Training
  • 作者:邹俞 ; 晁建刚 ; 林万洪
  • 英文作者:Zou Yu;Chao Jiangang;Lin Wanhong;National Key Laboratory of Human Factors Engeering,China Astronaut Research and Training Centre;
  • 关键词:力封闭 ; 运动物体 ; 碰撞 ; 抓持规则 ; 手势 ; 虚拟训练 ; 航天
  • 英文关键词:force closure;;moving objects;;collisions;;grasping rules;;gestures;;virtual training;;astronauts
  • 中文刊名:HYXB
  • 英文刊名:Space Medicine & Medical Engineering
  • 机构:中国航天员科研训练中心人因工程重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:航天医学与医学工程
  • 年:2019
  • 期:v.32
  • 基金:人因工程重点实验室基金项目(SYFD160051807)
  • 语种:中文;
  • 页:HYXB201901008
  • 页数:8
  • CN:01
  • ISSN:11-2774/R
  • 分类号:52-59
摘要
目的探索航天员虚拟训练中运动物体抓持规律,为提升地面仿真训练中存在的航天员协同操作训练效果提供技术基础。方法在力封闭虚拟手抓持规则的基础上,以手为研究对象,建立指尖和物体组成的碰撞系统,采用弹塑性力学推导建立物体运动和抓持碰撞时最大接触力之间的关系;开展实验分别验证手姿、材质和物体速度对抓持的影响。结果手姿对是否符合抓持规则起着重要影响,主要取决于抓持接触点位置和法矢;物体密度主要影响最大抓持压力,摩擦系数影响是否满足力封闭原理,杨氏模量对抓持影响较小;物体的运动速度越大,越难抓持。结论通过碰撞模型和力封闭原理实现了抓持判断,仿真手部抓持运动物体的场景,可以应用到航天员虚拟训练的虚拟手抓持场景,对航天员虚拟训练有应用价值。
        Objective To explore the grasping rules of moving objects in virtual training of astronauts,and to provide technical basis for improving the training effect of cooperative operation of astronauts in ground simulation training.Methods A collision system consisting of fingertips and objects was established based on the grasping rules of force-enclosed virtual hand,and the relationship between the maximum contact force of object motion and grasping collision was deduced by elastic-plastic mechanics.Experiments were carried out to verify the effects of gesture,material and object speed on grasping.Results Hand posture played an important role in grasping rules,which mainly depended on the position and normal vector of the grasping contact point.The density of the object mainly affected the maximum grasping pressure.The friction coefficient affected whether the force closure principle was satisfied.The Young's modulus had less influence on grasping and the greater the speed of the object,the more difficult it was to grasp.Conclusion Through collision model and force closure principle,grasp judgment was realized.The scene of grasping moving objects by hand was simulated.It can be applied to the virtual grasp scene of astronauts' virtual training and had practical value for astronauts' virtual training.
引文
[1]陈炜,姜国华,晁建刚.运动基飞行训练模拟器技术研究分析[J].航天医学与医学工程,2011,24(3):229-234.Chen W,Jiang GH,Chao JG.Research and analysis of sports-based flight training simulator technology[J].Space Medicine&Medical Engineering,2011,24(3):229-234.
    [2]晁建刚,陈善广,薛亮,等.航天飞行训练模拟器技术研究与工程实施[J].航天医学与医学工程,2008,21(3):233-239.Chao JG,Chen SG,Xue L,et al.Research and engineering implementation of aerospace flight simulator technology[J].Space Medicine&Medical Engineering,2008,21(3):233-239.
    [3]祖超.虚拟手术仿真中基于形变模型的力反馈关键技术研究[D].厦门:厦门大学,2009.Zu C.Research on key techniques of force feedback based on deformation model in virtual surgery simulation[D].Xiamen:Xiamen University,2009.
    [4]浣上,王素琴,晁建刚.航天飞行训练模拟器接口系统可靠性分析[J].航天医学与医学工程,2014,27(2):129-133.Huan S,Wang SQ,Chao JG.Reliability analysis of space flight training simulator interface system[J].Space Medicine&Medical Engineering,2014,27(2):129-133.
    [5] Roa MA,Suárez R.Grasp quality measures:Review and performance[J].Autonomous Robots,2015,38(1):65-88.
    [6] Wu FY,Asada HH.Implicit and intuitive grasp posture control for wearable robotic fingers:A data-driven method using partial least squares[J].IEEE Transactions on Robotics,2016,32(1):176-186.
    [7] Liu L,Wu P,Xiong W.Research on key technologies of system development of virtual supermarket cognitive rehabilitation training[J].Journal of Graphics,2014,35(1):105-109.
    [8]李克彬,王淑琴,单继红.虚拟手操作技术研究及实现[J].计算机仿真,2007,24(3):227-229.Li KB,Wang SQ,Shan JH.Research and implementation of virtual-hand operating technology[J].Computer Simulation,2007,24(3):227-229.
    [9]杨晓文,张志纯,况立群,等.基于虚拟手的人机交互关键技术研究[J].计算机应用,2015,36(4):1137-1140.Yang XW,Zhang ZQ,Kuang LQ,et al.The key technology research of human-computer interaction based on virtual hand[J].Computer Application,2015,36(4):1137-1140.
    [10] Li ZH,Zhong YF.A virtual hand model and its rule for grasping[J].Mini-micro Systems,2003,24(6):1071-1074.
    [11] Nguyen V.The synthesis of force-closure grasps[J].Laboratory Massachusetts Institute of Technology,1985,9(1):861-866.
    [12] Kruger H,Frank VDSA.Independent contact regions for local force closure grasps[C].IEEE International Conference on Robotics&Automation,IEEE,2013:1588-1594.
    [13] Kruger H,Rimon E,Frank VDSA.Local force closure[C].IEEE International Conference on Robotics&Automation,2012:4176-4182.
    [14] Salisbury JK.Kinematic and force analysis of articulated hands[M]//Recent advances in robotics.John Wiley&Sons,Inc.1985:131-174.
    [15] Cheong JS,Kruger H,Stappen AFVD.Output-sensitive computation of force-closure grasps of a semi-algebraic object[J].IEEE Transactions on Automation Science&Engineering,2011,8(3):495-505.
    [16] Gilart F.Determining force-closure grasps reachable by a given hand[J].IFAC Proceedings Volumes,2012,45(22):235-240.
    [17] Bicchi A.On the closure properties of robotic grasping[J].International Journal of Robotics Research,1995,14(4):319-334.
    [18] Ko CH,Chen JK.Grasping force based manipulation for multifingered hand-arm Robot using neural networks[J].Numerical Algebra Control&Optimization,2017,4(1):59-74.
    [19]秦志强,赵锡芳,李泽湘.机器人多指抓取的力封闭判别[J].上海交通大学学报,1999,33(7):858-861.Qin ZQ,Zhao XF,Li ZX.On the force closure of robotic multifingered grasp[J].Journal of Shanghai Jiaotong University,1999,33(7):858-861.
    [20]杨文珍,高曙明,万华根,等.基于物理的虚拟手交互碰撞力觉生成和反馈[J].计算机学报,2006,29(12):2096-2103.Yang WZ,Gao SM,Wan HG,et al.Validation the authenticity of virtual fingers grasping haptic algorithm[J].Journal of Image and Graphics,2015,20(2):280-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700