用户名: 密码: 验证码:
多控制面尺寸对前掠翼静气弹响应影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical study on effects of multi-control surfaces size on aeroelastic behavior of forward-swept wing
  • 作者:苏新 ; 王宁 ; 马斌麟 ; 冯浩洋 ; 孟元豪
  • 英文作者:Su Xinbing;Wang Ning;Ma Binlin;Feng Haoyang;Meng Yuanhao;Aeronautics Engineering College, Air Force Engineering University;Unity 93427,The Chinese People's Liberation Army;
  • 关键词:前掠翼 ; 静气动弹性 ; 多控制面尺寸 ; 气动特性 ; 弯扭变形 ; CFD/CSD松耦合
  • 英文关键词:forward-swept wing;;static aeroelasticity;;multiple control surfaces size;;aerodynamic characteristics;;bending and torsional deformation;;CFD/CSD loose coupling
  • 中文刊名:YYLX
  • 英文刊名:Chinese Journal of Applied Mechanics
  • 机构:空军工程大学航空工程学院;中国人民解放军93427部队;
  • 出版日期:2019-02-01 16:56
  • 出版单位:应用力学学报
  • 年:2019
  • 期:v.36;No.157
  • 基金:国家自然科学基金(11402301)
  • 语种:中文;
  • 页:YYLX201903010
  • 页数:7
  • CN:03
  • ISSN:61-1112/O3
  • 分类号:66-71+263
摘要
针对多控制面尺寸对弹性前掠翼静气弹响应的影响,基于计算流体力学/计算结构力学(CFD/CSD)松耦合静气动弹性数值计算方法,计算和分析了亚声速条件下前、后缘控制面弦向和展向尺寸对前掠翼模型气动特性和弹性变形特性的影响。计算结果表明:当前缘控制面弦向尺寸增大而后缘控制面弦向尺寸减小时,升力特性在迎角变化呈现相反特性,较小迎角条件下,升力特性逐渐变差,较大迎角条件下变好;当前缘控制面弦向尺寸增大而后缘控制面尺寸减小时,较小迎角条件下弯曲变形和扭转变形减缓,而较大迎角时相反;随着前、后缘控制面展向尺寸的增大,升力系数增大,升力特性提高;当前、后缘控制面展向尺寸逐渐增大时,较小迎角条件下弯曲变形加剧,扭转变形减缓,而较大迎角条件下弯曲和扭转变形均有所减缓。计算分析得到的规律可为前掠翼飞行器的设计及优化提供有益参考。
        A numerical simulation based on computational fluid dynamics/computational structural dynamics(CFD/CSD) loose coupling static aero elastic numerical calculation method is presented for the aeroelastic behavior of elastic forward-swept wing(FSW) with leading-edge and trailing-edge control surfaces. The calculation and analysis on aeroelastic behavior of the elastic FSW with different size multi-control surfaces were performed under the subsonic condition. The calculation result shows that, with the increase of the chord dimension of the leading-edge control surface and the decrease of the chordwise position of the trailing-edge control surface, the lift characteristics shows an opposite characteristics at different angle of attack. Under the condition of small angle of attack, the lift characteristic gradually becomes worse, and under the condition of larger angle of attack, it becomes better. With the increase of the chord dimension of the current edge control surface and the decrease of the size of the trailing-edge control surface, the bending and torsional deformation slow down at small angle of attack, but are opposite at larger angle of attack; with the increase of the spanwise position of the trailing-edge control surface, the lift coefficient increases and the lift characteristic increases; when the spanwise position of the control surfaces gradually increases, the bending deformation increases and the torsional deformation slows down under the condition of small angle of attack, while both of the bending and torsional deformation at higher angle of attack slows down. The study provides some references for the design and optimization of FSW.
引文
[1]BREITSAMTER C,LASCHKA B.Vortical flowfield structure at forward swept-wing configurations[J].Journal of aircraft,2001,38(2):193-207.
    [2]万志强,唐长红,邹丛青.柔性复合材料前掠翼飞机静气动弹性分析[J].复合材料学报,2002,19(5):118-124.(WAN Zhiqiang,TANG Changhong,ZOU Congqing.Static aeroelastic characteristics analysis of a flexible forward-swept composite aircraft[J].Acta materiae compositae sinica,2002,19(5):118-124(in Chinese)).
    [3]杨超.飞行器气动弹性原理[M].北京:北京航空航天大学出版社,2011:2-10.(YANG Chao.Principle of aircraft aeroelasticity[M].Beijing:Press of Beijing University of Aeronautics and Astronautics,2011:2-10(in Chinese)).
    [4]董文辉,夏露.一种基于N-S方程的CFD/CSD耦合计算方法[J].航空工程进展,2011,2(4):409-414.(DONG Wenhui,XIA Lu.CFD/CSD couping numerical computational method based on N-Sequations[J].Advances in aeronautical science and engineering,2011,2(4):409-414(in Chinese)).
    [5]徐敏,安效民,陈士橹.一种CFD/CSD耦合计算方法[J].航空学报,2006,27(1):33-37.(XU Min,AN Xiaomin,CHEN Shilu.CFD/CSD couping numerical computational methodology[J].Acta aeronautica et astronautica sinica,2006,27(1):33-37(in Chinese)).
    [6]PENDLETON E,GRIFFIN K,KEHOE M,et al.A flight research program for active aeroelastic wing technology:AIAA 96-1574[R].Reston:AIAA,1996:2263-2273.
    [7]CAI J,LIU F,TSAI H,et al.Static aero-elastic computation with a coupled CFD and CSD method:AIAA 01-0717[R].Reston:AIAA,2001:1-8.
    [8]张顺,郭少楠,庞辰,等.螺旋桨滑流对飞行器气动特性的影响机理研究[J].应用力学学报,2017,34(4):685-691.(ZHANG Shun,GUO Shaonan,PANG Chen,et al.The mechanics research of the effects of slip slow effects on aircraft with popeller[J].Chinese journal of applied mechanics,2017,34(4):685-691(in Chinese)).
    [9]冯浩洋,苏新兵,马斌麟,等.多面体网格在静气动弹性计算中的应用[J].飞行力学,2016,34(4):24-28.(FENG Haoyang,SUXinbing,MA Binlin,et al.Static aero-elastic computation with polyhedron grid[J].Flight dynamics,2016,34(4):24-28(in Chinese)).
    [10]张伟伟,高传强,叶正寅.气动弹性计算中网格变形方法研究进展[J].航空学报,2014,35(2):303-319.(ZHANG Weiwei,GAOChuanqiang,YE Zhengyin.Research progress on mesh deformation method in computational aeroelasticity[J].Acta aeronautica et astronautica sinica,2014,35(2):303-319(in Chinese)).
    [11]BALLMANN J,DAFNIS A,KORSCH H.Experimental analysis of high Reynolds number aero-structural dynamics in ETW[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting.Reno,Nevada:AIAA,2008:7-10.
    [12]马斌麟.多控制面对前掠机翼静气动弹性特性影响研究[D].西安:空军工程大学,2017:69-71.(MA Binlin.Numerical study on effects of multi-control surfaces on aeroelastic behavior of forward-swept wing[D].Xi’an:Air Force Engineering University,2017:69-71(in Chinese)).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700