用户名: 密码: 验证码:
微流控法可控构建微尺度功能材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Controllable microfluidic fabrication of microscale functional materials
  • 作者:汪伟 ; 苏瑶 ; 刘壮 ; 巨晓洁 ; 谢锐 ; 褚良银
  • 英文作者:WANG Wei;SU Yaoyao;LIU Zhuang;JU Xiaojie;XIE Rui;CHU Liangyin;School of Chemical Engineering,Sichuan University;State Key Laboratory of Polymer Materials Engineering,Sichuan University;
  • 关键词:微流体学 ; 模板合成 ; 功能材料 ; 乳液 ; 界面
  • 英文关键词:microfluidics;;template synthesis;;functional materials;;emulsions;;interface
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:四川大学化学工程学院;四川大学高分子材料工程国家重点实验室;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金重大研究计划重点支持项目(91434202)
  • 语种:中文;
  • 页:HGJZ201901035
  • 页数:13
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:428-440
摘要
微尺度功能材料的功能取决于材料结构和组分的精确协同匹配,但如何实现微尺度空间上多样化材料结构的精确调控和功能组分的精确协同定位仍是一大挑战。本文综述了微流控法可控构建新型微尺度功能材料的研究新进展,重点介绍了基于微流控制备的微尺度相界面体系中材料结构和组分的精确协同匹配来设计构建具有独特结构和功能的微尺度功能材料的新策略。首先介绍了以液滴状和液流状微尺度相界面体系为模板,分别可控构建具有多样化结构的功能微颗粒和微纤维的进展;然后介绍了以微通道受限空间内微尺度相界面体系为模板、原位可控构建微通道膜和功能微阀的进展。今后研究应关注于微尺度相界面体系的结构扩展创新及其规模化制备技术。
        The functions of microscale functional materials are determined by an accurate and synergistic combination of their structures and the constitute components. However, how to accurately manipulate diverse structures, and synergistically integrate diverse components in micro-space still remainschallenging. This review summarizes recent progress on the microfluidic fabrication of novel microscale functional materials. Emphases are placed on the new strategies for fabricating microscale functionalmaterials with unique structure and function, through accurate and synergistic combination of thestructures and the constitute components. First, controllable fabrication of functional microparticles andmicrofibers with diverse structures, respectively from microdroplet templates and microflow jet templatesis introduced. Then, in situ fabrication of functional membrane-in-chip and microvalves using confined microscale interfacial systems in microchannel as templates is introduced. Further study should focus onthe creation of microscale interfacial systems with more diverse structures and their scale-up techniques.
引文
[1] ATENCIA J, BEEBE D. Controlled microfluidic interfaces[J].Nature, 2005(7059):648-655.
    [2] WHITESIDES G M. The origins and the future of microfluidics[J].Nature, 2006, 442(7101):368-373.
    [3] ABATE A R, WEITZ D A. High‐order multiple emulsions formedin poly(dimethylsiloxane)microfluidics[J]. Small, 2009, 5(18):2030-2032.
    [4] WANG W, XIE R, JU X J, et al. Controllable microfluidicproduction of multicomponent multiple emulsions[J]. Lab on aChip, 2011, 11(9):1587-1592.
    [5] XU S, NIE Z, SEO M, et al. Generation of monodisperse particlesby using microfluidics:control over size, shape, and composition[J]. Angewandte Chemie International Edition, 2005, 44(25):734-738.
    [6] WU F, WANG W, LIU L, et al. Monodisperse hybridmicrocapsules with ultrathin shell of submicron thickness forrapid enzyme reaction[J]. Journal of Materials Chemistry B, 2015,3(5):796-803.
    [7] XU Q, HASHIMOTO M, DANG T T, et al. Preparation ofmonodisperse biodegradable polymer microparticles using amicrofluidic flow-focusing device for controlled drug delivery[J].Small, 2009, 5(13):1575-1581.
    [8] CHOI C H, JUNG J H, KIM D W, et al. Novel one-pot route tomonodisperse thermosensitive hollow microcapsules in amicrofluidic system[J]. Lab on a Chip, 2008, 8(9):1544-1551.
    [9] WANG W, ZHANG M J, CHU L Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions[J]. Accounts of Chemical Research, 2014, 47(2):373-384.
    [10] LIU Z, LIU L, JU X J, et al. K+-recognition capsules withsquirting release mechanisms[J]. Chemical Communications,2011, 47(45):12283-12285.
    [11] LIU L, YANG J, JU X J, et al. Monodisperse core-shell chitosanmicrocapsules for pH-responsive burst release of hydrophobicdrugs[J]. Soft Matter., 2011, 7(10):4821-4827.
    [12] WANG W, LIU L, DR X J J, et al. A novel thermo-induced self-bursting microcapsule with magnetic-targeting property[J].ChemPhysChem, 2009, 10(14):2405-2409.
    [13] LIU L, WANG W, JU X J, et al. Smart thermo-triggered squirtingcapsules for nanoparticle delivery[J]. Soft Matter., 2010, 6(16):3759-3763.
    [14] MOU C L, HE X H, JU X J, et al. Change in size and structure ofmonodisperse poly(N-isopropylacrylamide)microcapsules inresponse to varying temperature and ethyl gallate concentration[J].Chemical Engineering Journal, 2012, 210(6):212-219.
    [15] HE F, WANG W, HE X H, et al. Controllable multicompartmentalcapsules with distinct cores and shells for synergistic release[J].ACS Applied Materials&Interfaces, 2016, 8(13):8743-8754.
    [16] WANG W, LUO T, JU X J, et al. Microfluidic preparation ofmulticompartment microcapsules for isolated co-encapsulationand controlled release of diverse components[J]. InternationalJournal of Nonlinear Sciences and Numerical Simulation, 2012, 13(5):325-332.
    [17] SUN B J, SHUM H C, HOLTZE C, et al. Microfluidic meltemulsification for encapsulation and release of actives[J]. ACSApplied Materials&Interfaces, 2010, 2(12):3411-3416.
    [18] ZHANG M J, WANG W, YANG X L, et al. Uniform microparticleswith controllable highly interconnected hierarchical porousstructures[J]. ACS Applied Materials&Interfaces, 2015, 7(25):13758-13767.
    [19] LEE D, WEITZ D A. Nonspherical colloidosomes with multiplecompartments from double emulsions[J]. Small, 2009, 5(17):1932-1935.
    [20] NIE Z, XU S, SEO M, et al. Polymer particles with various shapesand morphologies produced in continuous microfluidic reactors[J].Journal of the American Chemical Society, 2005, 127(22):8058-8063.
    [21] WU F, JU X J, HE X H, et al. A novel synthetic microfiber withcontrollable size for cell encapsulation and culture[J]. Journal ofMaterials Chemistry B, 2016, 4(14):2455-2465.
    [22] LIN S, WANG W, JU X J, et al. Ultrasensitive microchip based onsmart microgel for real-time online detection of trace threatanalytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8):2023-2028.
    [23] SUN Y M, WANG W, WEI Y Y, et al. In situ fabrication oftemperature-and ethanol-responsive smart membrane in microchip[J]. Lab on a Chip, 2014, 14(14):2418-2427.
    [24] LIN S, WANG W, JU X J, et al. A simple strategy for in situfabrication of a smart hydrogel microvalve within microchannelsfor thermostatic control[J]. Lab on a Chip, 2014, 14(15):2626-2634.
    [25] MENG Z J, WANG W, LIANG X, et al. Plug-n-play microfluidicsystems from flexible assembly of glass-based flow-controlmodules[J]. Lab on a Chip, 2015, 15(8):1869-1878.
    [26] ZHANG M J, WANG W, XIE R, et al. Microfluidic fabrication ofmonodisperse microcapsules for glucose-response at physiologicaltemperature[J]. Soft Matter, 2013, 9(16):4150-4159.
    [27] WEI J, JU X J, ZOU X Y, et al. Multi-stimuli-responsivemicrocapsules for adjustable controlled-release[J]. AdvancedFunctional Materials, 2014, 24(22):3312-3323.
    [28] MOU C L, WANG W, LI Z L, et al. Trojan-horse-like stimuli-responsive microcapsules[J]. Advanced Science, 2018. DOI:10.1002/advs. 1700960.
    [29] DENG N N, YELLESWARAPU M, HUCK W T S. Monodisperseuni-and multicompartment liposomes[J]. Journal of the AmericanChemical Society, 2016, 138(24):7584-7591.
    [30] DENG N N, YELLESWARAPU M, ZEHNG L, et al. Microfluidicassembly of monodisperse vesosomes as artificial cell models[J].Journal of the American Chemical Society, 2017, 139(2):587-590.
    [31] DENG N N, HUCK W T S. Microfluidic formation ofmonodisperse coacervate organelles in liposomes[J]. AngewandteChemie International Edition, 2017, 56(33):9736-9740.
    [32] DENG N N, VIBHUTE M A, ZEHNG L, et al. Microfluidicassembly of monodisperse vesosomes as artificial cell models[J].Journal of the American Chemical Society, 2018, 140(24):7399-7382.
    [33] WANG W, ZHANG M J, XIE R, et al. Hole-shell microparticlesfrom controllably evolved double emulsions[J]. AngewandteChemie International Edition, 2013, 52(31):8084-8087.
    [34] HE X H, WANG W, DENG K, et al. Microfluidic fabrication ofchitosan microfibers with controllable internals from tubular topeapod-like structures[J]. RSC Advances, 2014, 5(2):928-936.
    [35] MENG Z J, WANG W, XIE R, et al. Microfluidic generation ofhollow Ca-alginate microfibers[J]. Lab on a Chip, 2016, 16(14):2673-2681.
    [36] HE X H, WANG W, LIU Y M, et al. Microfluidic fabrication ofbio-inspired microfibers with controllable magnetic spindle-knotsfor 3D assembly and water collection[J]. ACS Applied Materials&Interfaces, 2015, 7(31):17471-17481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700