用户名: 密码: 验证码:
微生态制剂对海水养殖系统硝化功能建立过程的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Microecological Preparation on the Establishment of Nitrification Function in Mariculture System
  • 作者:刘意康 ; 刘洋 ; 徐爱玲 ; 宋志文
  • 英文作者:LIU Yi-kang;LIU Yang;XU Ai-ling;SONG Zhi-wen;Schl.of Environ.& Muni.Engin.Qingdao Uni.of technology;
  • 关键词:微生态制剂 ; 海水养殖系统 ; 硝化强度 ; 碳源
  • 英文关键词:microecological preparations;;mariculture system;;nitrification intensity;;carbon source
  • 中文刊名:WSWX
  • 英文刊名:Journal of Microbiology
  • 机构:青岛理工大学环境与市政工程学院;
  • 出版日期:2019-06-15
  • 出版单位:微生物学杂志
  • 年:2019
  • 期:v.39
  • 基金:山东省重点研发计划项目(2018GSF117022)
  • 语种:中文;
  • 页:WSWX201903004
  • 页数:6
  • CN:03
  • ISSN:21-1186/Q
  • 分类号:22-27
摘要
比较分析投加不同微生态制剂的海水养殖系统硝化功能建立的过程,为实际应用提供依据。利用海水素构建4个海水养殖系统,通过投加硝化细菌、光合细菌、枯草芽胞杆菌3种微生态制剂以及纤维毛球作为生物膜载体,比较分析不同养殖系统硝化功能的建立过程及硝化强度差异。投加硝化细菌+光合细菌和硝化细菌+枯草芽胞杆菌系统硝化功能建立时间分别为108 h和96 h,氨氮初始质量浓度为6 mg/L时,氨氧化强度分别为1.69 mg/(L·d)和1.36 mg/(L·d);添加纤维毛球的生物膜系统与生物絮团系统硝化功能建立时间分别为96 h和120 h,氨氮初始质量浓度为6 mg/L时,氨氧化强度分别为1.36 mg/(L·d)和0.98 mg/(L·d);投加碳源系统和对照系统硝化功能建立时间分别为84 h和96 h,氨氮初始质量浓度为6 mg/L时,氨氧化强度分别为1.18 mg/(L·d)和1.36 mg/(L·d)。硝化细菌+枯草芽胞杆菌系统硝化功能建立时间更短,但系统硝化强度低于硝化细菌+光合细菌系统;生物膜系统硝化强度高于生物絮团系统且硝化功能建立更快;添加碳源能够加快系统硝化功能建立过程,但降低了硝化细菌+枯草芽胞杆菌系统的硝化强度。
        The establishment processes of nitrification function in mariculture systems with adding different microecological preparations were compared, in order to provide scientific basis for practical application. By adding the three kinds of probiotics including nitrification bacteria, photosynthetic bacteria, and Bacillus subtilis, and fiber balls as biofilm carrier, using the man made sea water to build four mariculture systems. The nitrification processes and nitrification intensity difference of different mariculture systems were compared and analyzed. The establishment time of nitrification functions of nitrification bacteria + photosynthetic bacteria and nitrification bacteria + Bacillus subtilis systems were 108 h and 96 h, respectively. When the initial concentration of ammonia nitrogen was at 6 mg/L, the ammonia oxidation intensity was 1.69 mg/(L·d) and 1.36 mg/(L·d), respectively. The nitrification functions of biofilm system with added fiber balls and biological flocculation system were 96 h and 120 h, respectively. When the initial concentration of ammonia nitrogen was at 6 mg/L, the ammonia oxidation intensity was at 1.36 mg/(L·d) and 0.98 mg/(L·d), respectively. The nitrification functions of adding carbon source system and the control system were established for 84 h and 96 h, respectively, when the initial concentration of ammonia nitrogen was at 6 mg/L, the ammonia oxidation intensity was at 1.18 mg/(L·d) and 1.36 mg/(L·d), respectively. The establishment time of nitrification functions of the system with nitrification bacteria + Bacillus subtilis was shorter, but the nitrification intensity was lower than that of the system with nitrification bacteria + photosynthetic bacteria. It took less time to establish nitrification function of the system by nitrification bacteria + Bacillus subtilis, but the system with nitrifying bacteria + Bacillus subtilis has lower nitrification intensity than the system of adding nitrification bacteria + photosynthetic bacteria. The nitrification intensity of the biofilm system was higher than that of the biofloc system, and the nitrification function of the biofilm system was established faster. The addition of a carbon source can accelerate the establishment process of nitrification function, however, reduced the nitrification intensity of the system of nitrification bacteria + Bacillus subtilis system.
引文
[1] 陈亨,陈琛,於俊琦,等.不同环境胁迫因子耦合对凡纳滨对虾生长与摄食的影响[J].上海海洋大学学报,2018,27(2):168-174.
    [2] 寇红岩,冼健安,郭慧,等.亚硝酸盐对虾类毒性影响的研究进展[J].海洋科学,2014,38(2):107-115.
    [3] 王彦波,许梓荣,邓岳松.水产养殖中氨氮和亚硝酸盐氮的危害及治理[J].饲料工业,2002,23(12):46-48.
    [4] Rijn JV.Waste treatment in recirculating aquaculture systems[J].Aquacultural Engineering,2013,53(53):49-56.
    [5] Choo HX,Caipang CMA.Biofloc technology (BFT) and its application towards improved production in freshwater tilapia culture[J].Aacl Bioflux,2015,8(3):362-366.
    [6] 侯颖,孙军德.微生态制剂在水产养殖中的作用[J].微生物学杂志,2004,24(4):49-52.
    [7] Hagopian DS,Riley JG.A closer look at the bacteriology of nitrification[J].Aquacultural Engineering,1998,18(4):223-244.
    [8] 杨世平,邱德全.水产养殖水体水质污染及水质处理微生物制剂的研究和应用现状(续)[J].中国水产,2004,8:83-84.
    [9] Idi A,Nor MHM,Wahab MFA,et al.Photosynthetic bacteria:an eco-friendly and cheap tool for bioremediation[J].Reviews in Environmental Science & Bio/Technology,2015,14(2):271-285.
    [10] 张健,章文军,裘琼芬,等.氨氮次溴酸钠氧化测定法的改良[J].环境科学与技术,2011,34(11):126-129.
    [11] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002:258-268.
    [12] 王琳,孔小蓉,周洋,等.4种填料构建海水养殖系统硝化动力学的比较研究[J].河北渔业,2014,(9):3-5.
    [13] 孟睿,何连生,席北斗,等.芽胞杆菌与硝化细菌净化水产养殖废水的试验研究[J].环境科学与技术,2009,32(11):28-31.
    [14] 沈涛,刘斯开,傅罗琴,等.光合细菌在鱼类养殖上的应用及其作用机理[J].水产科学,2012,31(2):114-118.
    [15] 丁爱中,陈繁忠.光合细菌调控水产养殖业水质的研究[J].农业环境科学学报,2000,19(6):339-341.
    [16] 刘飞,张凤琴,赵强忠,等.添加枯草芽胞杆菌和营养物净化养殖污水的研究[J].农业环境科学学报,2007,(4):1282-1286.
    [17] 王月霞,杨秀兰,杜荣斌,等.枯草芽胞杆菌对海水鱼塘生态因子的影响[J].渔业现代化,2016,43(1):1-6.
    [18] 仇丽.枯草芽胞杆菌在养殖中的应用[J].渔业现代化,2002,(4):26-26.
    [19] 刘军义,罗兆飞,李腾昌.固定化浓缩光合细菌对氨氮降解作用的研究[J].水产科技情报,2003,30(5):195-197.
    [20] Schryver PD,Crab R,Defoirdt T,et al.The basics of bio-flocs technology:The added value for aquaculture[J].Aquaculture,2008,277(3):125-137.
    [21] 陈亮亮,董宏标,李卓佳,等.生物絮团技术在对虾养殖中的应用及展望[J].海洋科学,2014,38(8):103-108.
    [22] Ahmad I,Rani AMB,Verma AK,et al.Biofloc technology:an emerging avenue in aquatic animal healthcare and nutrition[J].Aquaculture International,2017,25(3):1215-1226.
    [23] 张怖青,江兴龙,郑伟刚.生物絮团技术在水产养殖中的应用研究[J].渔业现代化,2016,43(6):33-38.
    [24] 谭洪新,庞云,王潮辉,等.驯化硝化型生物絮体养殖南美白对虾的初步研究[J].上海海洋大学学报,2017,26(4):490-500.
    [25] Ferreira LMH,Lara G,Jr WW,et al.Biofilm versus biofloc:Are artificial substrates for biofilm production necessary in the BFT system?[J].Aquaculture International,2016,24(4):921-930.
    [26] Gabriele Lara,Plínio S.Furtado,Bárbara Hostins,et al.Addition of sodium nitrite and biofilm in a Litopenaeus vannamei biofloc culture system[J].Latin American Journal of Aquatic Research,2017,44(4):760-768.
    [27] 江兴龙,邓来富.生物膜“细菌-藻类”协同系统改良淡水池塘养殖水质与沉积物的效果研究[J].海洋与湖沼,2015,46(3):603-610.
    [28] 张家松,陈亮亮,冯震华,等.人工基质在对虾养殖中的应用[J].海洋科学,2016,40(9):135-139.
    [29] 徐武杰.生物絮团在对虾零水交换养殖系统中功能效应的研究与应用[D].青岛:中国海洋大学,2014.
    [30] Ebeling JM,Timmons MB,Bisogni JJ.Engineering analysis of the stoichiometry of photoautotrophic,autotrophic,and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J].Aquaculture,2006,257(1-4):346-358.
    [31] 程海华,朱建新,曲克明,等.有机碳源对循环水养殖系统生物滤池净化作用的研究进展[J].渔业现代化,2015,42(3):28-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700