用户名: 密码: 验证码:
饮用水快速砂滤池优势微生物群落的代谢功能解析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metabolic Functional Analysis of Dominant Microbial Communities in the Rapid Sand Filters for Drinking Water
  • 作者:胡万超 ; 赵琛 ; 王巧娟 ; 刘锐平 ; 柏耀辉
  • 英文作者:HU Wan-chao;ZHAO Chen;WANG Qiao-juan;LIU Rui-ping;BAI Yao-hui;Key Laboratory of Drinking Water Science and Technology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Chemistry &Environmental Science,Hebei University;
  • 关键词:饮用水快滤池 ; 宏基因组 ; 优势微生物群落 ; 微生物功能 ; 异生物质
  • 英文关键词:rapid filter for drinking water;;metagenomics;;dominant microbial community;;microbial function;;xenobiotic
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中国科学院生态环境研究中心饮用水科学与技术重点实验室;中国科学院大学;河北大学化学与环境科学学院;
  • 出版日期:2019-03-26 15:25
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51778603)
  • 语种:中文;
  • 页:HJKZ201908024
  • 页数:8
  • CN:08
  • ISSN:11-1895/X
  • 分类号:210-217
摘要
快速砂滤池广泛应用于饮用水处理中,其净水效能一直被认为是物理化学作用,而对滤池表面附着微生物的净水作用仍不明晰.为了解析滤池中微生物的群落构成和功能特征,研究对国内8个城市的11座饮用水快滤池的进出水和滤料进行采样分析.进出水水质分析结果表明经过滤池处理,溶解性有机碳(DOC)有少量去除,氨氮(NH_4~+-N)显著降低,硝酸盐氮(NO_3~--N)显著增加,总氮(TN)未发生明显变化.利用宏基因组技术获得了滤池中微生物群落的构成和功能信息,滤池优势菌属(相对丰度占前10%)共14种,包括两类氨氧化细菌Nitrospira和Nitrosomonas.对优势菌属的功能基因信息进行分析,发现优势微生物菌群具有更高的碳水化合物、氮、硫和异生物质代谢功能丰度. Aeromonas的碳水化合物代谢基因相对丰度最高,Bradyrhizobium的氮、硫及异生物质代谢基因的相对丰度最高,说明这两种菌是影响饮用水水质的重要菌属.通过评价各个优势菌属对异生物质的代谢潜能,发现Bradyrhizobium、Sphingomonas、Methyloglobulus、Sphingopyxis和Klebsiella是饮用水快速砂滤池中降解微量有机污染物的关键菌.
        Rapid sand filter( RSF) is widely used in drinking water treatment plants. Rapid filtration is always considered a physicochemical process,but the effect of the microorganisms that attach to the filter media remain inadequately investigated. In order to understand the composition and functional characteristics of microbial communities in RSFs,influent water,effluent water,and filter materials from eleven RSFs in eight Chinese cities were sampled and analyzed. After filtration,dissolved organic carbon( DOC)showed a slight but significant removal due to the growth of heterotrophic microbes. The activity of ammonia-oxidizing microbes and nitrite-oxidizing microbes promoted a significant decrease in ammonia nitrogen( NH_4~+-N) and a significant increase in nitrate nitrogen( NO_3~--N) in water. No significant changes in total nitrogen( TN) were observed,indicating that denitrification and anammox were weak in the RSFs. The composition and function of the microbial communities of RSFs were assessed using metagenomic methods.Genera in the top 10% with respect to relative abundance( 14 genera in total) were identified as the dominant genera,including the two ammonia-oxidizing bacteria Nitrospira and Nitrosomonas. Functional gene information for the dominant genera was also extracted for analysis. The dominant genera exhibited higher relative abundances of carbohydrate,nitrogen,sulfur,and xenobiotic metabolic pathways. Aeromonas had the highest relative abundance of carbohydrate metabolic genes,and Bradyrhizobium had the highest relative abundance of nitrogen,sulfur,and xenobiotics metabolic genes,indicating that these two genera play an important role in the transformation of substances in drinking water. Finally,the metabolic potential of the dominant genera on xenobiotics was evaluated,and the results showed that Bradyrhizobium,Sphingomonas,Methyloglobulus,Sphingopyxis,and Klebsiella were the key bacterial genera for the removal of micropollutants in RSFs.
引文
[1]Bai Y H,Liu R P,Liang J S,et al.Integrated metagenomic and physiochemical analyses to evaluate the potential role of microbes in the sand filter of a drinking water treatment system[J].PLo SOne,2013,8(4):e61011.
    [2]Gülay A,Musovic S,Albrechtsen H J,et al.Ecological patterns,diversity and core taxa of microbial communities in groundwater-fed rapid gravity filters[J].The ISME Journal,2016,10(9):2209-2222.
    [3]Lautenschlager K,Hwang C,Ling F Q,et al.Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant[J].Water Research,2014,62:40-52.
    [4]Rittmann B E,Snoeyink V L.Achieving biologically stable drinking water[J].Journal American Water Works Association,1984,76(10):106-114.
    [5]Bruins J H,Petrusevski B,Slokar Y M,et al.Biological and physico-chemical formation of Birnessite during the ripening of manganese removal filters[J].Water Research,2015,69:154-161.
    [6]Crognale S,Casentini B,Amalfitano S,et al.Biological As(Ⅲ)oxidation in biofilters by using native groundwater microorganisms[J].Science of the Total Environment,2019,651:93-102.
    [7]Fowler S J,Palomo A,Dechesne A,et al.Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities[J].Environmental Microbiology,2018,20(3):1002-1015.
    [8]Gülay A,Musovic S,Albrechtsen H J,et al.Neutrophilic ironoxidizing bacteria:occurrence and relevance in biological drinking water treatment[J].Water Supply,2013,13(5):1295-1301.
    [9]Tatari K,Musovic S,Gülay A,et al.Density and distribution of nitrifying guilds in rapid sand filters for drinking water production:Dominance of Nitrospira spp.[J].Water Research,2017,127:239-248.
    [10]Terry L G,Summers R S.Biodegradable organic matter and rapid-rate biofilter performance:a review[J].Water Research,2018,128:234-245.
    [11]Hedegaard M J,Albrechtsen H J.Microbial pesticide removal in rapid sand filters for drinking water treatment-potential and kinetics[J].Water Research,2014,48:71-81.
    [12]Li Q,Yu S,Li L,et al.Microbial communities shaped by treatment processes in a drinking water treatment plant and their contribution and threat to drinking water safety[J].Frontiers in Microbiology,2017,8:2465.
    [13]Albers C N,Ellegaard-Jensen L,Harder C B,et al.Groundwater chemistry determines the prokaryotic community structure of waterworks sand filters[J].Environmental Science&Technology,2015,49(2):839-846.
    [14]Oh S,Hammes F,Liu W T.Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant[J].Water Research,2018,128:278-285.
    [15]Xu J J,Tang W,Ma J,et al.Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes[J].Applied Microbiology and Biotechnology,2017,101(13):5531-5541.
    [16]Schwarzenbach R P,Escher B I,Fenner K,et al.The challenge of micropollutants in aquatic systems[J].Science,2006,313(5790):1072-1077.
    [17]Brezina E,Prasse C,Wagner M,et al.Why small differences matter:elucidation of the mechanisms underlying the transformation of 2OH-and 3OH-carbamazepine in contact with sand filter material[J].Environmental Science&Technology,2015,49(17):10449-10456.
    [18]Gu Q H,Wu Q P,Zhang J M,et al.Isolation and transcriptome analysis of phenol-degrading bacterium from carbon-sand filters in a full-scale drinking water treatment plant[J].Frontiers in Microbiology,2018,9:2162.
    [19]Albers C N,Feld L,Ellegaard-Jensen L,et al.Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide(BAM)in bioaugmented rapid sand filters[J].Water Research,2015,83:61-70.
    [20]Horemans B,Raes B,Vandermaesen J,et al.Biocarriers improve bioaugmentation efficiency of a rapid sand filter for the treatment of 2,6-dichlorobenzamide-contaminated drinking water[J].Environmental Science&Technology,2017,51(3):1616-1625.
    [21]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.254-268.
    [22]Luo C W,Rodriguez-R L M,Konstantinidis K T.My Taxa:an advanced taxonomic classifier for genomic and metagenomic sequences[J].Nucleic Acids Research,2014,42(8):e73.
    [23]Li D H,Luo R B,Liu C M,et al.MEGAHIT v1.0:A fast and scalable metagenome assembler driven by advanced methodologies and community practices[J].Methods,2016,102:3-11.
    [24]Hyatt D,Chen G L,Lo Cascio P F,et al.Prodigal:prokaryotic gene recognition and translation initiation site identification[J].BMC Bioinformatics,2010,11:119.
    [25]Fu L M,Niu B F,Zhu Z W,et al.CD-HIT:accelerated for clustering the next-generation sequencing data[J].Bioinformatics,2012,28(23):3150-3152.
    [26]Bray N L,Pimentel H,Melsted P,et al.Near-optimal probabilistic RNA-seq quantification[J].Nature Biotechnology,2016,34(5):525-527.
    [27]Robinson M D,Mc Carthy D J,Smyth G K.edgeR:a Bioconductor package for differential expression analysis of digital gene expression data[J].Bioinformatics,2010,26(1):139-140.
    [28]Buchfink B,Xie C,Huson D H.Fast and sensitive protein alignment using DIAMOND[J].Nature Methods,2015,12(1):59-60.
    [29]Kanehisa M,Sato Y,Morishima K.BlastKOALA and Ghost KOALA:KEGG tools for functional characterization of genome and metagenome sequences[J].Journal of Molecular Biology,2016,428(4):726-731.
    [30]严煦世,范瑾初.给水工程[M].(第四版).北京:中国建筑工业出版社,1999.315-318.
    [31]de Vet W W J M,Kleerebezem R,van der Wielen P W J J,et al.Assessment of nitrification in groundwater filters for drinking water production by q PCR and activity measurement[J].Water Research,2011,45(13):4008-4018.
    [32]Lee C O,Boe-Hansen R,Musovic S,et al.Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment[J].Water Research,2014,64:226-236.
    [33]Tatari K,Smets B F,Albrechtsen H J.Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior[J].Water Research,2016,101:402-410.
    [34]Palomo A,Fowler S J,Gülay A,et al.Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp.[J].The ISME Journal,2016,10(11):2569-2581.
    [35]Shade A,Handelsman J.Beyond the venn diagram:the hunt for a core microbiome[J].Environmental Microbiology,2012,14(1):4-12.
    [36]Feng S,Chen C,Wang Q,et al.Microbial community in a fullscale drinking water biosand filter[J].Journal of Environmental Biology,2013,34(2):321-324.
    [37]Daims H,Lebedeva E V,Pjevac P,et al.Complete nitrification by Nitrospira bacteria[J].Nature,2015,528(7583):504-509.
    [38]van Kessel M A H J,Speth D R,Albertsen M,et al.Complete nitrification by a single microorganism[J].Nature,2015,528(7583):555-559.
    [39]Koch H,Lucker S,Albertsen M,et al.Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(36):11371-11376.
    [40]Daims H,Nielsen J L,Nielsen P H,et al.In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants[J].Applied and Environmental Microbiology,2001,67(11):5273-5284.
    [41]Kelly D P,Wood A P,Stackebrandt E.Thiobacillus[EB/OL].https://doi.org/10.1002/9781118960608.gbm00969,2015-09-14.
    [42]Kitagawa W,Takami S,Miyauchi K,et al.Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp.strain HW13 isolated from a pristine environment[J].Journal of Bacteriology,2002,184(2):509-518.
    [43]Sato Y,Monincova M,Chaloupkova R,et al.Two rhizobial strains,Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110,encode haloalkane dehalogenases with novel structures and substrate specificities[J].Applied and Environmental Microbiology,2005,71(8):4372-4379.
    [44]Abd-Alla M H.Phosphodiesterase and phosphotriesterase in Rhizobium and Bradyrhizobium strains and their roles in the degradation of organophosphorus pesticides[J].Letters in Applied Microbiology,1994,19(4):240-243.
    [45]Satsuma K,Masuda M,Sato K.A role of Bradyrhizobium elkanii and closely related strains in the degradation of methoxychlor in soil and surface water environments[J].Bioscience,Biotechnology,and Biochemistry,2013,77(11):2222-2227.
    [46]Nguyen L N,Nghiem L D,Oh S.Aerobic biotransformation of the antibiotic ciprofloxacin by Bradyrhizobium sp.isolated from activated sludge[J].Chemosphere,2018,211:600-607.
    [47]Qu Y,Spain J C.Biodegradation of 5-nitroanthranilic acid by Bradyrhizobium sp.strain JS329[J].Applied and Environmental Microbiology,2010,76(5):1417-1422.
    [48]Schink B,Deutzmann J S.Methyloglobulus[EB/OL].https://doi.org/10.1002/9781118960608.gbm01412,2016-06-29.
    [49]Jiang H,Chen Y,Jiang P X,et al.Methanotrophs:multifunctional bacteria with promising applications in environmental bioengineering[J].Biochemical Engineering Journal,2010,49(3):277-288.
    [50]Hedegaard M J,Deliniere H,Prasse C,et al.Evidence of cometabolic bentazone transformation by methanotrophic enrichment from a groundwater-fed rapid sand filter[J].Water Research,2018,129:105-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700