用户名: 密码: 验证码:
硅酸盐浓度对羽纹纲藻类圆弧运动的影响——以舟形藻为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The effect of dissolved silicic acid on circular motion behaviors in pennatae:A case study on diatom Navicula arenaria var.rostellata
  • 作者:王峰 ; 赵丽侠 ; 朱政 ; 胡文思 ; 刘权兴
  • 英文作者:WANG Feng;ZHAO Li-xia;ZHU Zheng;HU Wen-si;LIU Quan-xing;State Key Laboratory of Estuarine and Coastal Research,East China Normal University;School of Ecological and Environmental Sciences,East China Normal University;
  • 关键词:硅藻 ; 舟形藻 ; 运动行为 ; 硅酸盐浓度
  • 英文关键词:diatoms;;Navicula;;motion behavior;;dissolved silicic acid
  • 中文刊名:HDSZ
  • 英文刊名:Journal of East China Normal University(Natural Science)
  • 机构:华东师范大学河口海岸学国家重点实验室;华东师范大学生态与环境科学学院;
  • 出版日期:2019-03-25
  • 出版单位:华东师范大学学报(自然科学版)
  • 年:2019
  • 期:No.204
  • 基金:国家重点研发计划(2016YFE0103200);; 青年千人计划
  • 语种:中文;
  • 页:HDSZ201902015
  • 页数:12
  • CN:02
  • ISSN:31-1298/N
  • 分类号:140-151
摘要
以舟形藻为研究对象,以f/2+Si培养基中硅酸盐浓度30 mg/L为基准,设置不同硅酸盐浓度梯度(1、15、30、60、120和240 mg/L),通过显微跟踪技术获取舟形藻个体细胞的运动轨迹并研究硅酸盐浓度梯度对舟形藻运动行为的影响.发现如下结果.①舟形藻的主要运动方式为大量非恒速圆弧运动伴随着少量的随机倒退行为,圆弧运动过程曲率基本维持不变;倒退时刻运动方向和速度发生显著变化,此时夹角小于90°,倒退前后运动速度降低.②舟形藻在短时间尺度下呈现弹道行为;在中时间尺度下呈现超扩散行为;在长时间尺度下呈现布朗运动扩散行为.③舟形藻的运动行为显著依赖硅酸盐浓度,微量硅酸盐浓度(1 mg/L, Na_2SiO_3)和高硅酸盐浓度(120 mg/L, Na_2SiO_3; 240 mg/L, Na_2SiO_3)环境下会抑制舟形藻运动,低硅酸盐浓度(15 mg/L, Na_2SiO_3)和中硅酸盐浓度(30 mg/L, Na_2SiO_3; 60mg/L, Na_2SiO_3)下会增强舟形藻的扩散系数.硅酸盐浓度对硅藻个体运动行为的研究帮助理解硅藻的觅食策略和聚集行为,为进一步理解硅藻水华的发生、海洋生物污损现象和海雪现象的爆发提供思路.
        Diatoms play an important role in the primary productivity of aquatic systems and in driving the global silicon and carbon cycles in biogeochemistry. Navicula(Navicula arenaria var. rostellata) is a widely distributed diatom species in polluted aquatic and coastal ecosystems. In this study, we treat Navicula as the research object, using f/2+Si culture medium 30 mg/L dSi concentration as a reference to set different dSi concentration gradients(1 mg/L, 15 mg/L, 30 mg/L, 60 mg/L, 120 mg/L, 240 mg/L); based on the Navicula experiments and tracking of cell trajectories and behavior analysis, we explore the effects of different concentrations of dSi on diatom movement behaviors and diffusion coefficients. We found that: ① Their trajectories display circular motion associated with stochastic disruption. The curvature of the circular arc remains unchanged, and the direction and speed of the motion change significantly at the reverse time point; when the angle is less than 90 degrees; moreover, the velocity decreases before and after the reverse. ②Their motions display ballistic behavior on short time scales, Brownian-motion on long time scales, and super-diffusion on intermediate time scales. ③Miniscule and high dSi concentrations effectively inhibit active dispersal, whereas low and intermediate dSi concentrations promote dispersal on diatom cells. Here, our study of individual movement behaviors on diatoms helps to improve our understanding of foraging strategy and aggregation behavior in diatom biofilms; in addition, it provides new ideas on the outbreak of algal bloom, the marine biofouling phenomena, and marine snow phenomena.
引文
[1] SUMPER M, BRUNNER E. Learning from diatoms:Nature's tools for the production of nanostructured silica[J].Advanced Functional Materials, 2010, 16(1):17-26.
    [2] FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere:Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374):237.
    [3] SMETACEK V. Diatoms and the ocean carbon cycle[J]. Protist, 1999, 150(1):25-32.
    [4] YEBRA D M, KIIL S, DAM-JOHANSEN K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Progress in Organic Coatings, 2004, 50(2):75-104.
    [5] GAISER E E. The diatoms:Applications for the environmental and earth sciences[J]. Journal of Soils&Sediments, 2011, 30(7/8):103-104.
    [6] JIANG H, ZHENG Y, RAN L, et al. Diatoms from the surface sediments of the South China Sea and their relationships to modern hydrography[J]. Marine Micropaleontology, 2004, 53(3/4):279-292.
    [7] JIANG H, BJORCK S, RAN L, et al. Impact of the Kuroshio Current on the South China Sea based on a115?000 year diatom record[J]. Journal of Quaternary Science, 2010, 21(4):377-385.
    [8] NASSIF N, LIVAGE J. From diatoms to silica-based biohybrids[J]. Chemical Society Reviews, 2011, 40(2):849-59.
    [9] FAN T X, CHOW S K, ZHANG D. Biomorphic mineralization:From biology to materials[J]. Progress in Materials Science, 2009, 54(5):542-659.
    [10] GRACHEV M A, ANNENKOV V V, LIKHOSHWAY Y V. Silicon nanotechnologies of pigmented heterokonts[J].Bioessays News&Reviews in Molecular Cellular&Developmental Biology, 2008, 30(4):328-37.
    [11] FUHRMANN. Hammerzeh tut weh-diese und andere Zehendeformitaten[J]. Therapeutische Umschau, 2004,61(7):417-420.
    [12] SEUNG WON JUNG, OH YOUN KWON, JIN HWAN LEE, et al. Effects of water temperature and silicate on the winter blooming diatom Stephanodiscus hantzschii(Bacillariophyceae)growing in eutrophic conditions in the lower Han River, South Korea[J]. Journal of Freshwater Ecology, 2009, 24(2):219-226.
    [13] MARTIN JEZEQUEL V, HILDEBRAND M, BRZEZINSKI M A. Silicon metabolism in diatoms:Implications for growth[J]. Journal of Phycology, 2010, 36(5):821-840.
    [14] LEWIN J. Silicon metabolism in diatoms:5. Germanium dioxide, a specific inhibitor of diatom growth[J].Phycologia, 1966, 6(1):1-12.
    [15] EGGE J K, AKSNES D L. Silicate as regulating nutrient in phytoplankton competition[J]. Marine Ecology Progress, 1992, 83(2/3):281-289.
    [16]杨利敏.舟形藻对造纸废水中COD去除效率及其影响因素的研究[D].武汉:华中师范大学,2011.
    [17]李国忱,刘录三,汪星,等.硅藻在河流健康评价中的应用研究进展[J].应用生态学报,2012, 23(9):2617-2624.
    [18] MOLINO P J, WETHERBEE R. The biology of biofouling diatoms and their role in the development of microbial slimes[J]. Biofouling, 2008, 24(5):365-379.
    [19] WANG J, CAO S, DU C, et al. Underwater locomotion strategy by a benthic pennate diatom Navicula sp.[J].Protoplasma, 2013, 250(5):1203-1212.
    [20] DE BROUWER J F C, WOLFSTEIN K, STAL L J. Physical characterization and diel dynamics of different fractions of extracellular polysaccharides in an axenic culture of a benthic diatom[J]. European Journal of Phycology,2002, 37(1):37-44.
    [21] CALLOW J A, CALLOW M E. Trends in the development of environmentally friendly fouling-resistant marine coatings[J]. Nature Communications, 2011, 2(1):244.
    [22]陈琪.海洋底栖硅藻胞外多聚物的分泌和粘附行为的研究[D].上海:上海海洋大学,2016.
    [23]赵守涣.丹皮酚和四种微结构硅胶材料对小舟形藻的抑制作用研究[D]上海:上海海洋大学,2015.
    [24]杨强,谢平,徐军,等.河流型硅藻水华研究进展[J].长江流域资源与环境,2011(s1):159-165.
    [25]郑丙辉,曹承进,张佳磊,等.三峡水库支流大宁河水华特征研究[J].环境科学,2009, 30(11):3218-3226.
    [26]马美荣,李朋富,陈丽,等.盐度和营养限制对盐田底栖硅藻披针舟形藻生长及胞外多糖产率的影响[J].海洋湖沼通报,2009(1):95-102.
    [27]郑维发,王雪梅,王义琴,等.四种营养盐对舟形藻(Navicula)BT001生长速率的影响[J].海洋与湖沼,2007, 38(2):157-162.
    [28]刘菲菲,冯慕华,尚丽霞,等.温度对铜绿微囊藻(Microcystis aeruginosa)和鱼腥藻(Anabaena sp.)生长及胞外有机物产生的影响[J].湖泊科学,2014, 26(5):780-788.
    [29]曲青梅.舟形藻悬浮培养条件优化及营养成分分析[D]山东烟台:鲁东大学,2015.
    [30] BONDOC K G V, HEUSCHELE J, GILLARD J, et al. Selective silicate-directed motility in diatoms[J]. Nature Communications, 2016(7):10540.
    [31] GUTIERREZ-MEDINA B, GUERRA A J, MALDONADO A I, et al. Circular random motion in diatom gliding under isotropic conditions[J]. Physical Biology, 2014, 11(6):066006.
    [32] STOCKER R. Reverse and flick:Hybrid locomotion in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7):2635-2636.
    [33] XIE L, ALTINDAL T, CHATTOPADHYAY S, et al. From the cover:Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6):2246.
    [34] JACKSON G A, KIORBOE T. Zooplankton use of chemodetection to find and eat particles[J]. Marine Ecology Progress, 2004, 269(1):153-162.
    [35] TITELMAN J, KIORBOE T. Predator avoidance by nauplii[J]. Marine Ecology Progress, 2003, 247(1):137-149.
    [36] HOWSE J R, JONES R A L, RYAN A J, et al. Self-motile colloidal particles:From directed propulsion to random walk[J]. Physical Review Letters, 2007, 99(4):048102.
    [37] TAKAGI D, BRAUNSCHWEIG A B, ZHANG J, et al. Dispersion of self-propelled rods undergoing fluctuationdriven flips[J]. Physical Review Letters, 2013, 110(3):038301.
    [38] VISWANATHAN G M, AFANASYEV V, BULDYREV S V, et al. Levy flight search patterns of wandering albatrosses[J]. Nature, 1996, 381(6581):413-415.
    [39] VISWANATHAN G M, RAPOSO E P, LUZ M G E D. Levy flights and superdiffusion in the context of biological encounters and random searches[J]. Physics of Life Reviews, 2008, 5(3):133-150.
    [40] UNDERWOOD G J C, BOULCOTT M, RAINES C A, et al. Environmental effects on exopolymer production by marine benthic diatoms:dynamics, changes in composition, and pathways of production[J]. Journal of Phycology,2010, 40(2):293-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700