用户名: 密码: 验证码:
臀中肌主动响应对老年骨质疏松股骨颈骨折的有限元断裂力学分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite element fracture mechanics analysis of gluteus medius muscle active response to osteoporotic femoral neck fracture
  • 作者:孙文涛 ; 林梓凌 ; 李凡 ; 洪定刚 ; 周建飞 ; 庞向华 ; 韦怀籍 ; 徐攀峰 ; 王小芃
  • 英文作者:Sun Wentao;Lin Ziling;Li Fan;Hong Dinggang;Zhou Jianfei;Pang Xianghua;Wei Huaiji;Xu Panfeng;Wang Xiaopeng;Liuzhou Chinese Medicine Hospital;First Affiliated Hospital of Guangzhou University of Chinese Medicine;State Key Laboratory of Advanced Design Manufacture for Vehicle Body, Hunan University;
  • 关键词:臀中肌 ; 主动响应 ; 股骨颈 ; 骨质疏松 ; 断裂力学 ; 有限元分析
  • 英文关键词:gluteus medius muscle;;active response;;femoral neck fracture;;osteoporosis;;fracture mechanics;;finite element analysis
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:柳州市中医医院;广州中医药大学第一附属医院;湖南大学汽车车身先进设计制造国家重点实验室;
  • 出版日期:2019-08-07
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.889
  • 基金:国家自然科学基金项目(81673996),项目负责人:林梓凌~~
  • 语种:中文;
  • 页:XDKF201932016
  • 页数:5
  • CN:32
  • ISSN:21-1581/R
  • 分类号:92-96
摘要
背景:老年患者肌肉应激保护性动作响应同样是髋部骨折重要影响因素,相关报道较少。目的:运用有限元断裂力学方法研究臀中肌对老年骨质疏松股骨颈骨折的作用机制。方法:选取1例87岁在广州中医药大学第一附属医院诊断为股骨颈骨折老年女性患者,重建髋部骨骼与臀中肌的三维有限元模型,对材料赋值进行仿真模拟,分别模拟以下3种不同状态:肌肉激活前,M1模型:股骨头与矢状位呈20°夹角,自上而下施加500 N载荷;肌肉激活后,M2模型:在M1模型的基础上使髋关节外展外旋各5°;M3模型:在M1模型的基础上使髋关节外展内旋各5°,将3个模型导入有限元后处理软件LS-DYNA中计算,得到臀中肌主动响应前后基于应力-应变曲线关系的股骨颈骨折断裂模型,对比分析3种有限元断裂模型前后的骨折裂纹。结果与结论:(1)臀中肌主动响应后的M2、M3模型对比:M3模型在髋关节外展内旋5°后未见股骨颈骨折,而是在股骨约束区域发生骨折,M2模型在髋关节外展外旋5°后仍然发生了股骨颈骨折;(2)对比M1、M2模型:两者均发生股骨颈骨折,发生股骨颈骨折的时间均为T=22.5 ms,按照骨折移位程度M1模型骨折裂纹为GardenⅡ型,M2模型骨折裂纹为GardenⅢ型,较M1模型移位更加严重;(3)上述结果提示,臀中肌主动响应后,肌肉收缩引起髋关节跌倒姿势改变可能是影响老年股骨颈骨折裂纹的因素。
        BACKGROUND: There are no relevant reports in the world, which protective action response of muscle stress in elderly patients is also an important factor affecting hip fracture. OBJECTIVE: To investigate the mechanism of gluteus medius muscle on osteoporotic femoral neck fracture by finite element fracture mechanics. METHODS: A 87-year-old woman was diagnosed as a femoral neck fracture at the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine. The three-dimensional finite element model of hip and gluteus medius was reconstructed, and the material assignment was simulated to simulate the following three different states: before muscle activation; M1 model is defined as the femoral head and sagittal position were at an angle of 20 degrees and 500 N load was applied from the top down; after muscle activation, M2 model is external rotation of the hip joint by 5 degrees on the basis of the M1 model; in contrast to M2, the last M3 model was hip extension by internal rotation by 5 degrees. The three models were introduced into the finite element post-processing software LS-DYNA to calculate the fracture model of the femoral neck fracture based on the stress-strain curve before and after the active response of the gluteus medius muscle. The fractures before and after the three finite element fracture models were compared and analyzed. RESULTS AND CONCLUSION:(1) M2, M3 model comparison of gluteal muscle active response: M3 model did not present femoral neck fracture after 5 degrees internal abduction, but fractured in the femoral constrained area. In the M2 model, femoral neck fractures still occurred after the external abduction of the hip was rotated 5 degrees.(2) Compared with the M1 and M2 models, the femoral neck fractures occurred in both cases, and the time of femoral neck fractures was T=22.5 ms. According to the degree of fracture displacement M1 model fracture crack GardenⅡ type, but M2 model fracture crack Garden Ⅲ type, more serious than the M1 model shift.(3) To conclude, after the initiative response of gluteus medius muscle, muscle contraction caused by changes in hip posture may be the impact of fracture of the elderly femoral neck fracture factors.
引文
[1]Mithal A,Bansal B,Kyer CS,et al.The Asia-Pacific Regional Audit-Epidemiology,Costs,and Burden of Osteoporosis in India 2013:Areport of International Osteoporosis Foundation.Indian J Endocrinol Metab.2014;18(4):449-54.
    [2]洪维,朱晓颖,程群,等.老年髋部骨折患者肌肉减少症与骨密度的关系[J].中华骨质疏松和骨矿盐疾病杂志,2014,7(2):106-112.
    [3]黄宏兴,吴青,李跃华,等.肌肉、骨骼与骨质疏松专家共识[J].中国骨质疏松杂志,2016,22(10):1221-1229,1236.
    [4]李宗涛,葛新发,罗冬梅,等.神经肌肉反应活动能力衰退导致老年女性跌倒的因素研究[J].中国运动医学杂志,2015,34(6):559-563.
    [5]杜根发.基于断裂力学探讨骨密度影响老年股骨颈骨折的有限元分析[D].广州:广州中医药大学,2017.
    [6]韩勇.车辆与行人碰撞中下肢动力学响应和损伤生物力学分析[D].长沙:湖南大学,2009.
    [7]李鹏飞,杜根发,林梓凌,等.基于LS-DYNA模拟老年股骨颈骨折的有限元分析[J].中国组织工程研究,2016,20(44):6606-6611.
    [8]克鲁逊.克氏康复医学[M].北京.高等教育出版社,2014:18-20.
    [9]Santilli V,Bernetti A,Mangone M,et al.Clinical definition of sarcopenia.Clin Cases Miner Bone Metab.2014;11(3):177-180.
    [10]Morley JE,Anker SD,von HS.Prevalence,incidence,and clinical impact of sarcopenia:facts,numbers,and epidemiology-update 2014.JCachexia Sarcopenia Muscle.2014;5(4):253-259.
    [11]Cruz-Jentoft AJ,Baeyens JP,Bauer JM,et al.Sarcopenia:european consensus on definition and diagnosis:report of the european working group on sarcopenia in older people.Age Ageing.2010.39(4):412-23.
    [12]Scott D,Daly RM,Sanders KM,et al.Fall and fracture risk in sarcopenia and dynapenia with and without obesity:the role of lifestyle interventions.Curr Osteoporos Rep.2015;13(4):235-244.
    [13]文华林,郭书权,柳维才,等.髋部肌肉密度下降与髋部骨折的相关性研究[J].检验医学与临床,2017,14(13):1998-2000.
    [14]王彤,张跃.肌力训练对人工全髋置换术患者髋关节的生物力学影响[J].中国康复医学杂志,2001,16(5):288-291.
    [15]Widrick JJ,Fuchs R,Maddalozzo GF,et al.Relative effects of exercise training and alendronate treatment on skeletal muscle function of ovariectomized rats.Menopause.2007;14(3 Pt 1):528-534.
    [16]杨洪武,曾逸文,王刚锐,等.髋周肌肉对髋臼骨折的影响[J].中华创伤杂志,2006,22(9):694-697.
    [17]仲照明,宫赫,肖智韬,等.髋臼力和肌肉力对股骨有限元分析结果的影响[J].哈尔滨工业大学学报,2011,43(S1):303-308.
    [18]麻恒源.唇裂唇鼻肌肉系统三维解剖学研究与唇裂功能性修复的有限元生物力学模似[D].北京:北京协和医学院,2016.
    [19]杨鹏,魏秋实,陈达,等.基于头臼接触理论构建具有精确软骨受力面的股骨近端三维模型[J].广东医学,2017,38(20):3127-3131.
    [20]Davis J,Kaufman KR,Lieber RL.Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle.J Biomech.2003;36(4):505-512.
    [21]Myers BS,Woolley CT,Slotter TL,et al.The influence of strain rate on the passive and stimulated engineering stress--large strain behavior of the rabbit tibialis anterior muscle.J Biomech Eng.1998;120(1):126-132.
    [22]李凡,胡伟,粟思橙,等.能够模拟颈部肌肉主动力的混合假人模型[J].汽车安全与节能学报,2015,6(3):245-249.
    [23]Li F,Laville A,Bonneau D,et al.Study on cervical muscle volume by means of three-dimensional reconstruction.J Magn Reson Imaging.2014;39(6):1411-1416.
    [24]李凡,曹迎春,粟思橙,等.后碰撞中乘员颈部肌肉有限元模型的建立与验证[J].湖南大学学报(自然科学版),2016,43(8):45-51.
    [25]康颖安.断裂力学的发展与研究现状[J].湖南工程学院学报(自然科学版),2006,16(1):39-42.
    [26]余寿文.断裂力学的历史发展与思考[J].力学与实践,2015,37(3):390-394.
    [27]韩学冲.论断裂力学的发展和应用[J].住宅与房地产,2017,(24):286.
    [28]王荣.水泥混凝土路面断裂力学的应用现状及前景[J].武夷学院学报,2016,35(3):81-83.
    [29]张友根,曹亮.基于线弹性断裂力学的注塑机拉杆组件的微裂纹稳定要素的研究及应用(上)[J].橡塑技术与装备,2015,41(6):6-19.
    [30]张红叶,陈伟.基于断裂力学的重力坝有限元非线性动力分析[J].世界地震工程,2015,31(1):267-270.
    [31]郑利钦,林梓凌,李鹏飞,等.动态载荷下松质骨对骨质疏松性股骨颈骨折断裂力学影响的有限元分析[J].中国组织工程研究,2019,23(12):1887-1892.
    [32]郑利钦,林梓凌,何祥鑫,等.有限元法分析不同侧方跌倒角度下股骨颈骨折裂纹扩展的断裂力学特征[J].中国组织工程研究,2019,23(8):1203-1207.
    [33]孙文涛,林梓凌,李凡,等.基于Hypermesh/LS-DYNA仿真股骨干中上1/3骨折的断裂分析[J].广东医学,2017,38(16):2481-2483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700