用户名: 密码: 验证码:
微波电场对甘油水溶液体系中氢键的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of microwave field on hydrogen bonds in glycerol aqueous solution system
  • 作者:商辉 ; 刘露 ; 王瀚墨 ; 张文慧
  • 英文作者:SHANG Hui;LIU Lu;WANG Hanmo;ZHANG Wenhui;State Key Laboratory of Heavy Oil Processing, China University of Petroleum;
  • 关键词:微波 ; 甘油 ; 水溶液 ; 氢键 ; 分子模拟 ; 模型
  • 英文关键词:microwave;;glycerol;;aqueous solution;;hydrogen bond;;molecular simulation;;model
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:中国石油大学(北京)重质油国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金面上项目(21476258)
  • 语种:中文;
  • 页:HGSZ2019S1003
  • 页数:5
  • CN:S1
  • ISSN:11-1946/TQ
  • 分类号:29-33
摘要
通过分子动力学模拟考察微波电场对不同水含量甘油溶液中氢键的影响。研究发现:甘油含量高时,甘油分子在溶液中以较大的团簇结构存在,水分子以较小的团簇结构或游离状态存在,电场作用下,大的甘油分子团簇变成较小的团簇并且变得更加有序;随着电场强度继续增加,甘油分子整体结构变化不大,但是团簇结构边缘甘油分子氢键断裂,变成游离状态。对于水分子而言,其较小的团簇结构在电场作用下被打开,团簇结构消失,水分子在电场方向上整齐排布,且电场强度继续增大,其结构变化不大,同样个别水分子氢键断裂变成游离状态。因此,甘油浓度高时,水分子间氢键数减少,甘油分子氢键数先增大后略微减少;甘油浓度低时,水分子氢键数先增大后略有减少,甘油分子间氢键减少。
        Molecular dynamics simulation was employed to investigate the effect of the microwave on the hydrogen bond in the glycerol aqueous solution with different concentration. It was observed that at higher glycerol concentration, glycerol molecules existed in large clusters, whilst water in small clusters or at free state. The clusters of glycerol molecules changed from large to small and became more ordered under the electric field. As the electric field intensity further increased, the overall structure of glycerol molecule did not change obviously, the hydrogen bonds at the edge of glycerol clusters were found broken. For water molecules, smaller clusters under the effect of electric field were broken and disappeared, so water molecules were arranged neatly in the direction of electric field. As the electric field intensity continues to increase, the structure of water remained unchanged, and the hydrogen bonds of water changed to a free state. Therefore at higher glycerol concentration, the hydrogen bonds of water decreased, and those of glycerol first increased and then decreased slightly; at lower glycerol concentration,hydrogen bonds of water increased first and then decreased slightly, while those of glycerol decreased.
引文
[1] Behrends R, Fuchs K, Kaatze U, et al. Dielectric properties of glycerol/water mixtures at temperatures between 10 and 50degrees C[J]. Journal of Chemical Physics, 2006, 124(14):1417.
    [2] Sato T, Chiba A, Nozaki R. Hydrophobic hydration and molecular association in methanol–water mixtures studied by microwave dielectric analysis[J]. Journal of Chemical Physics, 2000, 112(6):2924-2932.
    [3] Hiejima Y, Yao M. Dielectric relaxation of lower alcohols in the whole fluid phase[J]. Journal of Chemical Physics, 2003, 119(15):7931-7942.
    [4] Schwerdtfeger S, K?hler F, Pottel R, et al. Dielectric relaxation of hydrogen bonded liquids:mixtures of monohydric alcohols with nalkanes[J]. Journal of Chemical Physics, 2001, 115(9):4186-4194.
    [5]董秀丽.小分子和水分子间氢键的理论研究[D].曲阜:曲阜师范大学, 2005.Dong X L. Theoretical study of hydrogen bonds between small molecules and water molecules[D]. Qufu:Qufu Normal University,2005.
    [6] Newtonfriend J, Hargreaves W X C. Viscosity and the hydrogen bond[J]. Philosophical Magazine, 1945, 36(262):731-756.
    [7]蒋华义.微波对高凝油作用规律的实验研究[J].油气田地面工程, 2004, 23(3):14-14.Jiang H Y. Experimental study on the effect of microwave on high coagulation oil[J]. Oil-Gasfield Surface Engineering, 2004, 23(3):14-14.
    [8]张兆镗.微波加热技术基础[M].北京:电子工业出版社,1988:12.Zhang Z T. Microwave Heating Technology Foundation[M].Beijing:Electronic Industry Press, 1988:12.
    [9]王陆瑶,孟东,李璐.“热效应”或“非热效应”——微波加热反应机理探讨[J].化学通报, 2013, 76(8):698-703.Wang L Y, Meng D, Li L. Thermal or nonthermal microwave effects—the mechanism of microwave heating[J]. Chemistry,2013, 76(8):698-703.
    [10]蒋华义.微波对高粘高凝原油作用规律研究[D].成都:西南石油学院, 2004.Jiang H Y. Study on the influence of microwave on high viscosity and high coagulation crude oil[D]. Chengdu:Southwest Petroleum University, 2004.
    [11] Hyde A, Horiguchi M, Minamishima N, et al. Effects of microwave irradiation on the decane-water interface in the presence of Triton X-100[J]. Colloids&Surfaces A:Physicochemical&Engineering Aspects, 2017, 524:178-184.
    [12]邓波,庞小峰.静磁场作用下的水的性质改变[J].电子科技大学学报, 2008, 37(6):959-962.Deng B, Pang X F. Static magnetic field influence on properties of water[J]. Journal of University of Electronic Science and Technology of China, 2008, 37(6):959-962.
    [13] Toledo E J L, Ramalho T C, Magriotis Z M. Influence of magnetic field on physical–chemical properties of the liquid water:insights from experimental and theoretical models[J]. Journal of Molecular Structure, 2008, 888(1/2/3):409-415.
    [14] Razmkhah M, Moosavi F, Mosavian M T H, et al. Does electric or magnetic field affect reverse osmosis desalination?[J].Desalination, 2018, 432:55-63.
    [15] PadróJ A, Saiz L, Guàrdia E. Hydrogen bonding in liquid alcohols:a computer simulation study[J]. Journal of Molecular Structure, 1997, 416(1/2/3):243-248.
    [16] Antipova M L, Petrenko V E. Hydrogen bond lifetime for water in classic and quantum molecular dynamics[J]. Russian Journal of Physical Chemistry A, 2013, 87(7):1170-1174.
    [17] Guàrdia E, MartíJ, PadróJ A, et al. Dynamics in hydrogen bonded liquids:water and alcohols[J]. Journal of Molecular Liquids, 2002, 96:3-17.
    [18] Zhao Y L, Dong K, Liu X M, et al. Structure of ionic liquids under external electric field:a molecular dynamics simulation[J].Molecular Simulation, 2012, 38(3):172-178.
    [19] Root L J, Berne B J. Effect of pressure on hydrogen bonding in glycerol:a molecular dynamics investigation[J]. Journal of Chemical Physics, 1997, 107(11):4350-4357.
    [20] Egorov A V, Lyubartsev A P, Laaksonen A. Molecular dynamics simulation study of glycerol-water liquid mixtures[J]. Journal of Physical Chemistry B, 2011, 115(49):14572-14581.
    [21] Dong H J, Yang J H, Mu S J. The effect of an external electric field on the structure of liquid water using molecular dynamics simulations[J]. Chemical Physics, 1999, 244(2/3):331-337.
    [22] Sun W, Chen Z, Huang S Y. Molecular dynamics simulation of liquid methanol under the influence of an external electric field[J].Fluid Phase Equilibria, 2005, 238(1):20-25.
    [23] Chen C, Li W Z, Song Y C, et al. Hydrogen bonding analysis of glycerol aqueous solutions:a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2009, 146(1):23-28.
    [24] Dashnau J L, Nucci N V, Sharp K A, et al. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures.[J].Journal of Physical Chemistry B, 2006, 110(27):13670-13677.
    [25]洪品杰,戴树珊,林春雷,等.醇-水,醇-酸混溶介质的微波衰减特性[J].化学研究与应用, 1993, 5(3):36-40.Hong P J, Dai S S, Lin C L, et al. Microwave attenuation characteristics of alcohol-water, alcohol-acid miscible media[J].Chemical Research and Application, 1993, 5(3):36-40.
    [26] Saiz L, Padro J A, Guardia E. Dynamics and hydrogen bonding in liquid ethanol[J]. Molecular Physics, 1999, 97(7):897-905.
    [27] Jahn D A, Akinkunmi F O, Giovambattista N. Effects of temperature on the properties of glycerol:a computer simulation study of five different force fields[J]. Journal of Physical Chemistry B, 2014, 118(38):11284-11294.
    [28] Hess B, Bekker H, Berendsen H J C, et al. LINCS:a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997, 18(12):1463–1472.
    [29] Nag A, Chakraborty D, Chandra A. Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions[J]. Journal of Chemical Sciences, 2008,120(1):71-77.
    [30] English N J, Macelroy J M D. Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields[J].Journal of Chemical Physics, 2003, 119(22):11806-11813.
    [31]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社, 2007:110.Chen Z L, Xu W R, Tang L D. Theory and Practice of Molecular Simulation[M]. Beijing:Chemical Industry Press, 2007:110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700