用户名: 密码: 验证码:
Fe~(3+)对植酸封端的金纳米颗粒SERS性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Fe~(3+) on SERS Performance of Phytic Acid Terminated Gold Nanoparticles
  • 作者:张垒 ; 张霞 ; 柳晓钰 ; 翁仪瑾 ; 刘肖
  • 英文作者:Zhang Lei;Zhang Xia;Liu Xiaoyu;Weng Yijin;Liu Xiao;School of Materials Engineering, Shanghai University of Engineering Science;
  • 关键词:光谱学 ; 表面增强拉曼散射 ; 植酸 ; 金纳米颗粒 ; 表面拉曼增强光谱 ; 罗丹明B
  • 英文关键词:spectroscopy;;surface enhanced Raman scattering;;phytic acid;;gold nanoparticles;;surface Raman enhanced scattering;;Rhodamine B
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:上海工程技术大学材料工程学院;
  • 出版日期:2018-12-27 11:13
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:国家自然科学基金青年基金(61404082)
  • 语种:中文;
  • 页:JJZZ201903039
  • 页数:6
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:306-311
摘要
利用植酸(IP6)、柠檬酸三钠和硝酸银的氧化还原制备了银纳米粒子,基于银纳米粒子与氯金酸的置换反应制备了IP6封端的金纳米颗粒,研究了该纳米颗粒的粒径分布和组成,结果显示:该纳米颗粒的均匀性良好;通过合成表面增强拉曼散射(SERS)基底可以准确有效地检测拉曼探针,检测极限可以达到10~(-8) mol·L~(-1);当添加质量分数为0.28×10~(-6)~0.56×10~(-6)的Fe~(3+)时,IP6与Fe~(3+)形成的螯合物可以增加热点数,使SERS增强效果及检测灵敏度得到提升。
        Silver nanoparticles are prepared by redox reduction of phytic acid(IP6), trisodium citrate and silver nitrate, and IP6 terminated gold nanoparticles are synthesized by displacement reaction of silver nanoparticles with chloroauric acid. The particle size distribution and composition are studied, and it is found that the uniformity of the nanoparticles is favorable. By synthesizing surface enhanced Raman scattering(SERS) substrate, Raman probes can be accurately and efficiently detected, and the detection limit can reach 10~(-8) mol·L~(-1). When a proper amount of Fe~(3+)(mass fraction from 0.28×10~(-6) to 0.56×10~(-6)) is added, IP6 forms a chelate with Fe~(3+), which increases the number of hot spots and further enhances the SERS enhancement effect and detection sensitivity.
引文
[1] Yang Y, Weng G J, Zhao J, et al. Progresses of preparation and applications of paper-based surface-enhanced Raman scattering substrate[J]. Chinese Journal of Lasers, 2018, 45(3): 0307011. 杨玥, 翁国军, 赵婧, 等. 纸质表面增强拉曼散射基底的制备及其应用进展[J]. 中国激光, 2018, 45(3): 0307011.
    [2] Liang S Y, Liu H M, Mu Y Y, et al. Gold nanocluster assembled nanoislands for surface-enhanced Raman scattering application[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 87-92. 梁淑妍, 刘红梅, 穆云云, 等. 金纳米团簇组装的表面增强拉曼散射基底[J]. 光谱学与光谱分析, 2018, 38(1): 87-92.
    [3] Laor U, Schatz G C. The role of surface roughness in surface enhanced Raman spectroscopy (SERS): the importance of multiple plasmon resonances[J]. Chemical Physics Letters, 1981, 82(3): 566-570.
    [4] Zong C, Xu M X, Xu L J, et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chemical Reviews, 2018, 118(10): 4946-4980.
    [5] Ilkhani H, Hughes T, Li J, et al. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA[J]. Biosensors and Bioelectronics, 2016, 80: 257-264.
    [6] Liu K, Bai Y C, Zhang L, et al. Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis[J]. Nano Letters, 2016, 16(6): 3675-3681.
    [7] Li M H. Preparation of gold and silver bimetallic SERS substrate and its application in food detection[D]. Shanghai: Shanghai Normal University, 2016. 李梦华. 金银双金属SERS基底的制备及其在食品检测中的应用[D]. 上海: 上海师范大学, 2016.
    [8] Tang K. The synthesis of silver-silica nanocomposites and their applications in surface-enhanced Raman spectroscopy[D]. Wuhan: Huazhong Agricultural University, 2016. 汤坤. 银-二氧化硅纳米复合物的合成及其在表面增强拉曼光谱中的应用[D]. 武汉: 华中农业大学, 2016.
    [9] Futamata M, Yu Y Y, Yanatori T, et al. Closely adjacent Ag nanoparticles formed by cationic dyes in solution generating enormous SERS enhancement[J]. The Journal of Physical Chemistry C, 2010, 114(16): 7502-7508.
    [10] Wang J F, Wu X Z, Wang C W, et al. Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 19958-19967.
    [11] Sivashanmugan K, Lee H, Syu C H, et al. Nanoplasmonic Au/Ag/Au nanorod arrays as SERS-active substrate for the detection of pesticides residue[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75: 287-291.
    [12] Nagy-Simon T, Tatar A S, Craciun A M, et al. Antibody conjugated, Raman tagged hollow gold-silver nanospheres for specific targeting and multimodal Dark Field/ SERS/ Two Photon-FLIM imaging of CD19(+) B lymphoblasts[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21155-21168.
    [13] Jia H Y. Synthesis,characterization of SERS active silver nanoparticles[D]. Jilin: Jilin University, 2006. 贾慧颖. 银纳米粒子的制备、表征及其表面增强拉曼散射活性研究[D]. 吉林: 吉林大学, 2006.
    [14] Xu L M, Kang J, Zeng Y M, et al. Rapid detection of Rhodamine B in raw paprika and other food based on SERS technique[J]. Science and Technology of Food Industry, 2017, 38(24): 238-242, 247. 许丽梅, 康靖, 曾勇明, 等. SERS技术应用于食品中罗丹明B的快速检测[J]. 食品工业科技, 2017, 38(24): 238-242, 247.
    [15] Jalani G, Cerruti M. Nano graphene oxide-wrapped gold nanostars as ultrasensitive and stable SERS nanoprobes[J]. Nanoscale, 2015, 7(22): 9990-9997.
    [16] Hou T, Liu Y Y, Xu L, et al. Au dotted magnetic graphene sheets for sensitive detection of thiocyanate[J]. Sensors and Actuators B: Chemical, 2017, 241: 376-382.
    [17] Guo X Y, Fu Y C, Fu S Y, et al. Improving SERS activity of inositol hexaphosphate capped silver nanoparticles: Fe3+ as a switcher[J]. Inorganic Chemistry, 2014, 53(14): 7227-7232.
    [18] Wang N, Yang H F, Zhu X, et al. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate[J]. Nanotechnology, 2009, 20(31): 315603.
    [19] He X, Chen Y X, Zhao X J, et al. Deposition anisotropic silver nanoparticles on conventional glass surface[C]. Journal of Wuhan University of Technology, 2007, 29(S1): 52-55. 何鑫, 陈云霞, 赵修建, 等. 各向异性银纳米颗粒在玻璃表面的沉积[J]. 武汉理工大学学报, 2007, 29(S1): 52-55.
    [20] Xu Y Y. Study on the influence of surface anisotropy and shape on the magnetic properties of nanoparticles[D]. Shenyang: Northeastern University, 2007. 徐媛媛. 表面各向异性和形状对纳米颗粒磁性质影响的研究[D]. 沈阳: 东北大学, 2007.
    [21] Zhou N. Synthesis of anisotropic gold nanoparticles and their surface-eenhanced Raman scattering properties[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2015. 周妮. 结构各向异性金纳米颗粒的制备及其SERS特性研究[D]. 南京: 南京邮电大学, 2015.
    [22] Zou M, Dong J F, Li X F. Preparation of anisotropic gold nanoparticles using seed-mediated[C]. Chinese Society of Colloid and Interface Chemistry Conference, 2015: 207-208. 邹敏, 董金凤, 李学丰. 晶种法制备各向异性金纳米颗粒[C]. 中国化学会胶体与界面化学会议, 2015: 207-208.
    [23] Zhu M Z, Zhang H L, Jia H H, et al. Study of ultraviolet scattering phase function based on Mie scattering theory[J]. The Journal of Light Scattering, 2007, 19(3): 225-229. 朱孟真, 张海良, 贾红辉, 等. 基于Mie散射理论的紫外光散射相函数研究[J]. 光散射学报, 2007, 19(3): 225-229.
    [24] Guo L F, Shen J Q. Dependence of forward light scattering particle size measurement on the relative refractive index[J]. Chinese Journal of Lasers, 2016, 43(3): 0308004. 郭露芳, 沈建琪. 相对折射率对前向散射粒度测试的影响[J]. 中国激光, 2016, 43(3): 0308004.
    [25] Wu D C, Wei B, Tang G,et al. Turbidity disturbance compensation for UV-VIS spectrum of waterbody based on Mie scattering[J]. Acta Optica Sinica, 2017, 37(2): 0230007. 吴德操, 魏彪, 汤戈, 等. 基于Mie散射的水体紫外-可见光谱浊度干扰补偿[J]. 光学学报, 2017, 37(2): 0230007.
    [26] Gao X N, Wu Y, Huang Y P, et al. A novel porous flower-like HA/Ag nanocomposite: one pot preparation and excellent performances as both SERS nanosensor and catalyst[J]. Microporous and Mesoporous Materials, 2018, 258: 1-7.
    [27] Pan D H, Miao R C, Li X Y, et al. Fluorescence enhancement or quenching of molecule at SERS active surfaces[J]. Acta Physica Sinica, 1989, 38(6): 965-972. 潘多海, 苗润才, 李秀英, 等. SERS活性表面荧光增强或淬灭的机制研究[J]. 物理学报, 1989, 38(6): 965-972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700