用户名: 密码: 验证码:
ZnO/MoO_3/Al(OH)_3阻燃聚丙烯材料的制备及性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Properties of ZnO/MoO_3/Al(OH)_3 Flame Retardant Polypropylene Composites
  • 作者:郭军红 ; 刘国天 ; 何婷香 ; 董世斌 ; 杨保平 ; 崔锦峰
  • 英文作者:GUO Jun-hong;LIU Guo-tian;HE Ting-xiang;DONG Shi-bin;YANG Bao-ping;CUI Jin-feng;Petrochemical Technology Institute, Lanzhou University of Technology;Gansu Northwest Light Cable Co., Ltd.;
  • 关键词:ZnO纳米线 ; MoO_3纳米线 ; 纳米氢氧化铝 ; 聚丙烯 ; 阻燃性能 ; 橡塑助剂
  • 英文关键词:ZnO nanowires;;MoO_3 nanowires;;nano Al(OH)_3;;polypropylene;;flame retardant performance;;rubber and plastics auxiliaries
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:兰州理工大学石油化工学院;甘肃西北之光电缆有限公司;
  • 出版日期:2019-03-06 13:30
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(51465036)~~
  • 语种:中文;
  • 页:JXHG201906032
  • 页数:6
  • CN:06
  • ISSN:21-1203/TQ
  • 分类号:221-226
摘要
采用水热法制备了一维材料ZnO和MoO_3纳米线(nanowires,NWs),并通过SEM和XRD对纳米线的形貌和结构进行了表征。将一维纳米线和纳米氢氧化铝(ATH)与聚丙烯(PP)熔融共混制备了ZnO/MoO_3/Al(OH)_3/PP复合材料(NWs/ATH/PP)。利用TGA、极限氧指数(LOI)测定仪和锥形量热仪(CCT)表征了复合材料的热稳定性和燃烧性能,利用万能材料试验机测试了复合材料的力学性能。结果表明:当添加质量分数3.75%ZnO纳米线、质量分数3.25%MoO_3纳米线和质量分数21.00%纳米ATH时,NWs/ATH/PP复合材料的初始分解温度较纯PP增加了17.8℃,残重率为24.6%,峰值热释放速率(PHRR)和总热释放量(THR)分别下降了54.3%和25.7%,LOI提高7.1%。SEM结果显示:NWs/ATH/PP的残炭表面致密、连续且平整。
        One-dimensional materials of ZnO and MoO_3 nanowires(NWs) were prepared via hydrothermal method. Their morphology and structure were characterized by SEM and XRD. A series of ZnO/MoO_3/Al(OH)_3/polypropylene(PP) composites(NWs/ATH/PP) were prepared by melt blending one-dimensional nanowires and nano-aluminum hydroxide(ATH) with PP. The thermal stability and combustion properties of the composites were characterized by TGA, limiting oxygen index(LOI) analyzer and cone calorimeter(CCT). The mechanical properties of the composites were tested by universal testing machine. The results showed that when the adding amounts of ZnO nanowires, MoO_3 nanowires and nano-ATH were 3.75%,3.25% and 21.00%(mass fraction), respectively, the initial decomposition temperature of the prepared NWs/ATH/PP composites was 17.8 ℃ higher than that of pure PP, and the residue rate was 24.6%. And the peak heat release rate(PHRR) and total heat release(THR) were decreased by 54.3% and 25.7%,respectively. The LOI value was increased by 7.1%. The results of SEM analysis showed that the surface of residual char of NWs/ATH/PP composites was well improved, dense, continuous and flat.
引文
[1]Li X,Zhao Z,Wang Y,et al.Highly efficient flame retardant,flexible,and strong adhesive intumescent coating on polypropylene using hyperbranched polyamide[J].Chemical Engineering Journal,2017,324:237-250.
    [2]Nie S,Liu L,Dai G,et al.Investigation on pyrolysis of intumescent flame-retardant polypropylene(PP)composites based on synchrotron vacuum ultraviolet photoionization combined with molecular-beam mass spectrometry[J].Journal of Thermal Analysis and Calorimetry,2017,130(2):1003-1009.
    [3]Qin Z,Li D,Zhang W,et al.Surface modification of ammonium polyphosphate with vinyltrimethoxysilane:Preparation,characterization,and its flame retardancy in polypropylene[J].Polymer Degradation and Stability,2015,119:139-150.
    [4]Zhou Pengxin(周鹏鑫),Huang Li(黄莉),Ma Delong(马德龙),et al.Preparation and properties of organic palygorskite clay-intumescent flame retardant polypropylene composites[J].Fine Chemicals(精细化工),2015,32(9):961-967.
    [5]Feng C,Liang M,Jiang J,et al.Synergistic effect of a novel triazine charring agent and ammonium polyphosphate on the flame retardant properties of halogen-free flame retardant polypropylene composites[J].Thermochimica Acta,2016,627-629:83-90.
    [6]Xing W,Wang X,Song L,et al.Enhanced thermal stability and flame retardancy of polystyrene by incorporating titanium dioxide nanotubes via radical adsorption effect[J].Composites Science and Technology,2016,133:15-22.
    [7]Wang F,Wang Y,Dong Q,et al.Core-shell expandable graphite@aluminum hydroxide as a flame-retardant for rigid polyurethane foams[J].Polymer Degradation and Stability,2017,146:267-276.
    [8]Pan Y T,Wang X,Li Z,et al.A facile approach towards large-scale synthesis of hierarchically nanoporous SnO2@Fe2O30D/1D hybrid and its effect on flammability,thermal stability and mechanical property of flexible poly(vinyl chloride)[J].Composites,Part B:Engineering,2017,110:46-55.
    [9]Khandare L,Late D J.MoO3-r GO nanocomposites for electrochemical energy storage[J].Applied Surface Science,2017,418:2-8.
    [10]Hang D,Sharma K H,Chen C,et al.Enhanced photocatalytic performance of ZnO nanorods coupled by two-dimensionalα-MoO3nanoflakes under UV and visible light irradiation[J].Chemistry-AEuropean Journal,2016,22(36):12777-12784.
    [11]Lin J J,Luo Z Z,Liu J J,et al.Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2nanocomposites[J].Materials Science in Semiconductor Processing,2018,87:24-31.
    [12]Hu S,Hu J,Yu C,et al.2D/1D heterostructure of g-C3N4nanosheets/CdS nanowires as effective photo-activated support for photoelectrocatalytic oxidation of methanol[J].Catalysis Today,2018,315:36-45.
    [13]Li H X,Dong W,Zhang J,et al.MoS2 nanosheet/ZnO nanowire hybrid nanostructures for photoelectrochemical water splitting[J].Journal of the American Ceramic Society,2018,101(9):3989-3996.
    [14]Kong L,Tu K,Guan H,et al.Growth of high-density ZnO nanorods on wood with enhanced photostability,flame retardancy and water repellency[J].Applied Surface Science,2017,407:479-484.
    [15]Han Y Q,Li T X,Gao B,et al.Synergistic effects of zinc oxide in montmorillonite flame-retardant polystyrene nanocomposites[J].Journal of Applied Polymer Science,2016,133(10):43047.
    [16]Xu W Z,Li C H,Hu Y X,et al.Synthesis of MoO3 with different morphologies and their effects on flame retardancy and smoke suppression of polyurethane elastomer[J].Polymers for Advanced Technologies,2016,27(7):964-972.
    [17]Xiang Qun(向群),Pan Qingyi(潘庆谊),Xu Jiaqiang(徐甲强),et al.Solvothermal preparation of zinc oxide nanowires[J].Journal of Inorganic Chemistry(无机化学学报),2007,23(2):369-372.
    [18]Bai S L,Chen C,Tian Y,et al.Facile synthesis ofα-MoO3 nanorods with high sensitivity to CO and intrinsic sensing performance[J].Materials Research Bulletin,2015,64:252-256.
    [19]Standardization Administration of the People's Republic of China.GB/T2406.2-2009:Plastics-determination of burning behavior by oxygen index-Part 2:Ambient-temperature test[S].Beijing:Standards Press of China(中国标准出版社),2009:6-15.
    [20]International Organization for Standardization.ISO5660-1:2002:Reaction-to-fire tests-Heat release,smoke production and mass loss rate-Part 1:Heat release rate(conecalorimeter method)[S].International Standards Press,2002:3-31.
    [21]Standardization Administration of the People's Republic of China.GB/T1040.2-2006:Plastics-determination of tensile properties-Part2:Test conditions for moulding and extruded plastics[S].Beijing:Standards Press of China(中国标准出版社),2006:3-5.
    [22]Standardization Administration of the People's Republic of China.GB/T1843-2008:Plastics-determination of izod impact strength[S].Beijing:Standards Press of China(中国标准出版社),2008:2-7.
    [23]Samanta A K,Bhattacharyya R,Jose S,et al.Fire retardant finish of jute fabric with nano zinc oxide[J].Cellulose,2017,24(2):1143-1157.
    [24]Guo Junhong(郭军红),Xu Fen(许芬),Guo Yongliang(郭永亮),et al.Synergistic flame retardant effect of Al(OH)3-phosphorus hybrid polymer/polystyrene composite[J].Materials Review(材料导报),2018,(14):2497-2502.
    [25]Gao Dangge(高党鸽),Zhang Yahong(张亚红),Lv Bin(吕斌),et al.Preparation of PAA/ATP nanocomposites and their flame retardancy[J].Fine Chemicals(精细化工),2018,35(2):298-302.
    [26]Hajibeygi M,Maleki M,Shabanian M,et al.New polyvinyl chloride(PVC)nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability,low heat release rate and improved mechanical properties[J].Applied Surface Science,2018,439:1163-1179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700