用户名: 密码: 验证码:
环境工况对弧形板逆流蒸发冷却器性能影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of environmental conditions on performance of arc-plate counter flow evaporative cooler
  • 作者:张继东 ; 王于曹 ; 张文凯 ; 芦春生
  • 英文作者:Zhang Jidong;Wang Yucao;Zhang Wenkai;Lu Chunsheng;Anyang Tobacco Factory, China Tobacco Henan industrial Co., Ltd;School of Energy and Power Engineering, Zhengzhou University of Light Industry;
  • 关键词:蒸发冷却 ; 冷却效率 ; 露点间接蒸发冷却
  • 英文关键词:Evaporative cooling;;Cooling efficiency;;Dew point indirect evaporative cooler
  • 中文刊名:DWYC
  • 英文刊名:Cryogenics & Superconductivity
  • 机构:河南中烟工业有限责任公司安阳卷烟厂;郑州轻工业学院能源与动力工程学院;
  • 出版日期:2019-03-22 16:49
  • 出版单位:低温与超导
  • 年:2019
  • 期:v.47
  • 基金:河南省杰出青年基金(154100510014);; 河南省教育厅创新才团队项目(17IRTSTHN029)资助
  • 语种:中文;
  • 页:DWYC201903013
  • 页数:5
  • CN:03
  • ISSN:34-1059/O4
  • 分类号:71-75
摘要
本文设计了弧形板片式露点蒸发冷却器,研究了环境工况和进气速度比对其冷却效率的影响。研究结果表明:在研究范围内,工作气体与产出气体进气速度比为1.5时冷却效率最大,达到126.24%;通过与传统结构对比,在相同的进气温度、环境湿度、进气速度条件下,该种间接蒸发冷却器冷却效率最大可以提高10.32%、25.82%、13.87%。
        In this paper, an arc-plate dew-point evaporative cooler was designed. The effects of environmental conditions and inlet air velocity on cooling efficiency were studied. The results show that the highest cooling efficiency is 126.24% when the ratio of the working air to the produced air inlet velocity is 1.5. Compared with the traditional structure, the cooling efficiency of the arc-plate dew-point indirect evaporative cooler increases by 10.32%, 25.82%, and 13.87% under the same conditions of air inlet temperature, ambient humidity, and air inlet velocity, respectively.
引文
[1] 江亿. 我国建筑节能战略研究[J]. 中国工程科学, 2011, 13(6): 30-38.
    [2] 龙惟定, 马素贞, 白玮. 我国住宅建筑节能潜力分析——除供暖外的住宅建筑能耗[J]. 暖通空调, 2007, 37(5): 47-50.
    [3] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告[M]. 北京:中国建筑工业出版社,2016.
    [4] MEINSHAUSEN M, MEINSHAUSEN N, HARE W, et al. Greenhouse-gas emission targets for limiting global warming to 2 ℃[J].Nature, 2009, 458(7242): 1158- 1162.
    [5] 宣永梅, 黄翔, 闫振华, 等. 西北地区使用干空气能的蒸发冷却辐射供冷[J]. 流体机械, 2009, 37(2): 82-85.
    [6] 我国利用“干空气能”获突破[J]. 节能与环保, 2008(3): 8.
    [7] 申长军. 光伏发电与蒸发冷却复合空调系统的实验研究[D]. 西安:西安工程大学, 2016.
    [8] ANISIMOV S, PANDELIDIS D, DANIELEWICZ J.Numerical study and optimization of the combined indirect evaporative air cooler for air-conditioning systems[J]. Energy, 2015, 80(2): 452-464.
    [9] WOODS J, KOZUBAL E. A desiccant-enhanced evaporative air conditioner: numerical model and experiments[J]. Energy Conversion and Management, 2013, 65(January 2013): 208-220.
    [10] 吴学红, 杨雅浓, 陆刘记,等. 逆流式露点间接蒸发冷却器性能及优化研究[J]. 低温与超导, 2016(6): 66-70.
    [11] LIN J, WANG R Z, KUMJA M,et al. Multivariate scaling and dimensional analysis of the counter-flow dew point evaporative cooler[J]. Energy Conversion and Management, 2017, 150: 172-187.
    [12] WAN Y D, LIN J, CHUA K J, et al. Similarity analysis and comparative study on the performance of counter-Flow dew point evaporative coolers with experimental validation[J]. Energy Conversion and Management, 2018, 169:97-110.
    [13] 王于曹, 陆刘记, 吴学红. 逆流式波纹隔板露点间接蒸发冷却器性能研究[J]. 低温与超导, 2018, 46(4):58-62.
    [14] LIN J, BUI D T, WANG R Z, et al. The counter-flow dew point evaporate cooler:Analyzing its transient and steady-state behavior[J].Applied Thermal Engineering, 2018, 143:34-47.
    [15] CUI X, CHUA K J, YANG W M, et al. Studying the performance of an improved dew-point evaporative design for cooling application[J]. Applied Thermal Engineering, 2014, 63(2): 624-633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700