用户名: 密码: 验证码:
蒸发岩盆地古环境的直接记录:来自石盐流体包裹体的证据
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Direct Geolocal Records of Ancient Environments in the Evaporite Basin:Evidences from Fluid Inclusions in Halite
  • 作者:孟凡巍 ; 张智礼 ; 卓勤功 ; 倪培
  • 英文作者:MENG Fan-wei;ZHANG Zhi-li;ZHUO Qin-gong;NI Pei;State Key Laboratory of Palaeobiology and Stratigraphy,Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment,Chinese Academy of Sciences;Petroleum Exploration and Development Research Institute,SINOPEC;Research Institute of Petroleum Exploration and Development,CNPC;PetroChina Key Laboratory of Basin Structure and Hydrocarbon Accummulation;School of Earth Science and Engineering,Nanjing University;
  • 关键词:蒸发岩 ; 石盐 ; 包裹体 ; 古环境
  • 英文关键词:evaporite;;halite;;fluid inclusion;;paleoenvironment
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中国科学院南京地质古生物研究所生物演化与环境卓越中心现代古生物学和地层学国家重点实验室;中国石油化工股份有限公司石油勘探开发研究院;中国石油勘探开发研究院;中国石油集团盆地构造与油气成藏重点实验室;南京大学地球科学与工程学院;
  • 出版日期:2018-05-10
  • 出版单位:矿物岩石地球化学通报
  • 年:2018
  • 期:v.37
  • 基金:国家自然科学基金项目(4151101015);; 以色列联合基金项目(2221/15)
  • 语种:中文;
  • 页:KYDH201803006
  • 页数:11
  • CN:03
  • ISSN:52-1102/P
  • 分类号:87-96+197
摘要
蒸发岩是保存古环境信息的宝库,而石盐是蒸发岩盆地完全干涸后最主要的矿物。石盐矿物具有很好的封闭性,在浅埋深状态就会固结成岩,没有孔隙并且不可压缩。石盐、石膏、钙芒硝、芒硝中的包裹体,是潟湖或陆地盐湖环境下,通过蒸发而结晶析出过程中所捕获的流体(液体和/或气体)。因此,在石盐矿物的内部可以保存下来良好的原生石盐流体包裹体,它们记录了原始海洋/盐湖的温度、化学组分和大气成分的信息,为古环境研究提供了绝妙的直接记录。其中石盐原生流体包裹体的均一温度,可记录卤水沉积时的温度;浅水环境石盐流体包裹体记录的卤水温度近似等于气温。石盐原生流体包裹体中的卤水成分代表了海水/盐湖蒸发浓缩过程中的卤水,可通过其来推断当时的海水/盐湖水体的成分。石盐漏斗晶形成时是漂浮在卤水表面的,其原生流体包裹体可捕获当时的大气,而石盐是一种稳定的无机矿物,其原生流体包裹体可保存原始的大气信息。石盐原生流体包裹体可以提供其他传统地球化学手段无法提供的直接、精确、定量的地质记录,因此在未来的古环境研究中将成为焦点。
        Evaporite is a treasure chest for reserving the information of ancient environments. Halite is the most widely distributed evaporitic mineral in the completely dried evaporitic basin. Halite has good closure and will be consolidated to halite rock with poreless and incompressible features in a shallow buried state. Fluid inclusions in halite,gypsum and glauberite,and mirabilite contain fluids( liquid or/and gases) which were captured during their crystalizations in the evaporation process of ancient marine lagoon or continental salt lake. Therefore,primary fluid inclusions in halite can record informations of temperature,chemical composition of the ocean,salt lake,and composition of the atmosphere in geological times directly,and can provide excellent direct records of paleoenvironments. Homogenization temperatures of primary fluid inclusions in halite can represent the brine temperature during halite crystalization. In shallow brine,the highest homogenization temperatures of fluid inclusions in halite can approximately represent the air temperature. The compositionsof brines in primary fluid inclusions in halite can respectively represent those of seawater/salt lake water during evaporation process,and then can be used to infer the composition of seawater/salt lake water at that time. The halite funnel crystals,which were formed and floated in the top part of the brine,can capture ancient atmosphere as gas bubbles in primary fluid inclusions of the halite,indicating that primary fluid inclusions in halite can preserve original information of the paleo-atmesphere. Therefore,primary fluid inclusions in halite can provide accurate,direct and quantitive geological records that are not available by other traditional geochemical means,and will become the focus of paleoenvironmental studies in the future.
引文
Barker C E,Goldstein R H.1990.Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer.Geology,18(10):1003-1006
    Benison K C,Goldstein R H.1999.Permian paleoclimate data from fluid inclusions in halite.Chemical Geology,154(1-4):113-132
    Berner E K,Berner R A.1987.The global water cycle,Geochemistry and environment.New Jersey:Prentice-Hall,Englewood Cliffs,396
    Berner R A,Landis G P.1988.Gas bubbles in fossil amber as possible indicators of the major gas composition of ancient air.Science,239(4846):1406-1409
    Blamey N J F,Parnell J,Mc Mahon S M,Mark D F,Tomkinson T,Lee M,Shivak J,Izawa M R M,Banerjee N R,Flemming R L.2015.Evidence for methane in Martian meteorites.Nature Communications,6:7399
    Blamey N J F,Brand U,Parnell J,Spear N,Christophe L,Benison K,Meng F W,Ni P.2016.Paradigm shift in determining Neoproterozoic atmospheric oxygen.Geology,44(8):651-654
    Brennan S T,Lowenstein T K,Horita J.2004.Seawater chemistry and the advent of biocalcification.Geology,32(6):473-476
    Casas E,Lowenstein T K.1989.Diagenesis of saline pan halite;Comparison of petrographic features of modern,Quaternary and Permian Halites.Journal of Sedimentary Research,59(5):724-739
    Cerling T E.1989.Does the gas content of amber reveal the composition of palaeoatmospheres?Nature,339(6227):695-696
    Cloud P.1976.Beginnings of biospheric evolution and their biogeochemical consequences.Paleobiology,2(4):351-387
    Coutinho C C,Fonseca R N,Mansure J J C,Borojevic R.2003.Early steps in the evolution of multicellularity:Deep structural and functional homologies among homeobox genes in sponges and higher metazoans.Mechanisms of Development,120:429-440
    Dal Corso J,Preto N,Kustatscher E,Mietto P,Roghi G,Jenkyns H C.2011.Carbon-isotope variability of Triassic amber,as compared with wood and leaves(Southern Alps,Italy).Palaeogeography,Palaeoclimatology,Palaeoecology,302(3-4):187-193
    Dellwig I F.1955.Origin of the salina salt of michigan.Journal of Sedimentary Petrology,25(2):83-110
    Einsele G.2000.Sedimentary Basins.Evolution,Facies and Sediment Budget.Berlin:Springer-Verlag,
    Goldstein R H,Reynolds T J.1994.Systematics of fluid inclusions in diagenetic minerals.SEPM Short Course,31
    Goldstein R H.2001.Clues from fluid inclusions.Science,294(5544):1009-1011
    Hardie L A,Lowenstein T K,Spencer R J.1985.The problem of distinguishing between primary and secondary features in evaporates.In:Schreiber B C,Harber H I,eds.Sixth International Symposium on Salt.Alexandia,Virginia,USA:The Salt Institute,11-39
    Hildenbrand A,Urai J L.2003.Investigation of the morphology of pore space in mudstones-first results.Marine and Petroleum Geology,20(10):1185-1200
    Holt N M,García-Veigas J,Lowenstein T K,Giles P S,Williams-Stroud S.2014.The major-ion composition of Carboniferous seawater.Geochimica et Cosmochimica Acta,134:317-334
    Hopfenberg H B,Witchey L C,Poinar Jr GO.1988.Is the air in amber ancient?Science,241(4866):717-718
    Ingram G M,Urai J L.1999.Top-seal leakage through faults and fractures:The role of mudrock properties.In:Alpin AC,Fleet AJ,Macquaker JHS eds.Muds and Mudstones:Physical and Fluid Flow Properties.Geological Society,London,Special Publications,158:125-135
    Kempe S,Kaz'mierczak J.1994.The role of alkalinity in the evolution of ocean chemistry,organization of living systems,and biocalcification processes.Bulletin de la Institut Oceanographique(Monaco),13:61-117
    Khmelevska O,Kovalevych V,Peryt T M.2000.Changes of seawater composition in the Triassic-Jurassic time as recorded by fluid inclusions in halite.Journal of Geochemical Exploration,69-70:83-86
    Knauth L P.2005.Temperature and salinity history of the Precambrian ocean:Implications for the course of microbial evolution.Palaeogeography,Palaeoclimatology,Palaeoecology,219(1-2):53-69
    Knoll A H,Carroll S B.1999.Early animal evolution:Emerging views from comparative biology and geology.Science,284(5423):2129-2137
    Kovalevych V M,Peryt T M,Petrichenko O I.1998.Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite.The Journal of Geology,106(6):695-712
    Kovalevych V M,Peryt T M,Beer W,Geluk M,Haas S.2002.Geochemistry of Early Triassic seawater as indicated by study of the R9t halite in the Netherlands,Germany,and Poland.Chemical Geology,182(2-4):549-563
    Kovalevych V M,Peryt T M,Zang W L,Vovnyuk S V.2006a.Composition of brines in halite-hosted fluid inclusions in the Upper Ordovician,Canning Basin,Western Australia:New data on seawater chemistry.Terra Nova,18(2):95-103
    Kovalevych V M,Marshall T,Peryt T M,Petrychenko O Y,Zhukova S A.2006b.Chemical composition of seawater in Neoproterozoic:Results of fluid inclusion study of halite from Salt Range(Pakistan)and Amadeus Basin(Australia).Precambrian Research,144,(1-2):39-51
    Kovalevych V M,Paul J,Peryt T M.2009.Fluid inclusions in halite from the R9t(Lower Triassic)salt deposit in Central Germany:Evidence for seawater chemistry and conditions of salt deposition and recrystallization.Carbonates and Evaporites,24(1):45-57
    Krüger Y,García-Ruiz J M,Canals,Marti D,Frenz M,Van Driessche A E S.2013.Determining gypsum growth temperatures using monophase fluid inclusions-Application to the giant gypsum crystals of Naica,Mexico.Geology,41(2):119-122
    Lowenstein T K,Hardie L A.1985.Criteria for the recognition of salt pan evaporites.Sedimentology,32(5):627-644
    Lowenstein T K,Li J R,Brown C B.1998.Paleotemperatures from fluid inclusions in halite:Method verification and a 100,000 year paleotemperature record,Death Valley,CA.Chemical Geology,150(3-4):223-245
    Lowenstein T K,Timofeeff M N,Brennan S T,Hardie L A,Demicco RV.2001.Oscillations in phanerozoic seawater chemistry:Evidence from fluid inclusions.Science,294(5544):1086-1088
    Mc Caffrey M A,Lazar B,Holland H D.1987.The evaporation path of seawater and the coprecipitation of Br-and K+with halite.Journal of Sedimentary Petrology,57(5):928-938
    Mc Culloch D S.1959.Vacuole disappearance temperatures of laboratorygrown hopper halite crystals.Journal of Geophysical Research,64(7):849-854
    Meng F W,Ni P,Schiffbauer J D,Yuan X L,Zhou C M,Wang Y G,Xia M L.2011.Ediacaran seawater temperature:Evidence from inclusions of Sinian halite.Precambrian Research,184(1-4):63-69
    Meng F W,Ni P,Yuan X L,Zhou C M,Yang C H,Li Y P.2013.Choosing the best ancient analogue for projected future temperatures:Acase using data from fluid inclusions of middle-late Eocene halites.Journal of Asian Earth Sciences,67-68:46-50
    Meng F W,Galamay A R,Ni P,Yang C H,Li Y P,Zhuo Q G.2014.The major composition of a middle-late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite.Journal of Asian Earth Sciences,85:97-105
    Meng F W,Zhang Z L,Schiffbauer J D,Zhuo Q G,Zhao M J,Ni P,Liu W H,Ahsan N,Rehman S U.2017a.The Yudomski event and subsequent decline:New evidence fromδ34S data of lower and middle Cambrian evaporites in the Tarim Basin,western China.Carbonates and Evaporites,doi:10.1007/s13146-017-0407-9
    Meng F W,Zhang Z L,Yan X Q,Ni P,Liu W H,Fan F,Xie G W.2017b.Stromatolites in Middle Ordovician carbonate-evaporite sequences and their carbon and sulfur isotopes stratigraphy,Ordos Basin,northwestern China.Carbonates and Evaporites,doi:10.1007/s13146-017-0367-0
    Meng F W,Zhang Y S,Galamay A R,Bukowski K,Ni P,Xing E Y,Ji L M.2018.Ordovician seawater composition:Evidence from fluid inclusions in halite.Geological Quarterly,62(2):344-352
    Murray R C.1964.Origin and Diagenesis of gypsum and anhydrite.Journal of Sedimentary Research,34(3):512-523
    Pagani M,Zachos J C,Freeman K H,Tipple B,Bohaty S.2005.Marked decline in atmospheric carbon dioxide concentrations during the Paleogene.Science,308(5734):600-603
    Parry W T,Blamey N J F.2010.Fault fluid composition from fluid inclusion measurements,Laramide age Uinta thrust fault,Utah.Chemical Geology,278(1-2):105-119
    Petrychenko O Y,Peryt T M,Chechel E I.2005.Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites.Chemical Geology,219(1-4):149-161
    Popp T,Kern H,Schulze O.2001.Evolution of dilatancy and permeability in rock salt during hydrostatic compaction and triaxial deformation.Journal of Geophysical Research:Solid Earth,106(B3):4061-4078
    Robert F,Chaussidon M.2006.A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts.Nature,443(7114):969-972
    Roberts S M,Spencer R J.1995.Paleotemperatures preserved in fluid inclusions in halite.Geochimica et Cosmochimica Acta,59(19):3929-3942
    Roedder E.1984.The fluids in salt.American Mineralogist,69(5):413-439
    Sandberg P A.1983.An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy.Nature,305(5929):19-22
    Satterfield C L,Lowenstein T K,Vreeland R H,Rosenzweig W D.2005.Paleobrine temperatures,chemistries,and paleoenvironments of Silurian salina formation F-1 Salt,Michigan basin,U.S.A.,from petrography and fluid inclusions in Halite.Journal of Sedimentary Research,75(4):534-546
    Shepherd T J,Chenery S R.1995.Laser ablation ICP-MS elemental analysis of individual fluid inclusions:An evaluation study.Geochimica et Cosmochimica Acta,59(19):3997-4007
    Siemann M G,Ellendorf B.2001.The composition of gases in fluid inclusions of late Permian(Zechstein)marine evaporites in Northern Germany.Chemical Geology,173(1-3):31-44
    Timofeef M N,Lowenstein T K,Brennan S T,Demicco R V,Zimmermann H,Horita J,Von Borstel L E.2001.Evaluating seawater chemistry from fluid inclusions in halite:Examples from modern marine and nonmarine environments.Geochimica et Cosmochimica Acta,65(14):2293-2300
    Timofeeff M N,Lowenstein T K,Blackburn W H.2000.ESEM-EDS:An improved technique for major element chemical analysis of fluid inclusions.Chemical Geology,164(3-4):171-181
    Timofeeff M N,Lowenstein T K,Da Silva M A M,Harris N B.2006.Secular variation in the major-ion chemistry of seawater:Evidence from fluid inclusions in Cretaceous halites.Geochimica et Cosmochimica Acta,70(8):1977-1994
    Vreeland R H,Rosenzweig W D,Powers D W.2000.Isolation of a 250Million-year-halotolerant bacterium from a primary salt crystal.Nature,407(6806):897-900
    Warren J K.1999.Evaporites:Their evolution and economics.Oxford,UK:Wiley-Blackwell
    Warren J K.2006.Evaporites:Sediments,resources and hydrocarbons.Berlin,Heidelberg:Springer.
    Yang C H,Li Y P,Chen F,Yin X Y.2006.Geological feasibility research report of energy underground storage of Yunying salt mine in Hubei Province.Institute of Rock and Soil Mechanics.CAS
    Zambito J J,Benison K C.2013.Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite.Geology,41(5):587-590
    Zhang X Y,Meng F W,Li W X,Tang Q L,Ni P.2016.Reconstruction of late cretaceous coastal paleotemperature from halite deposits of the late cretaceous nongbok formation(Khorat Plateau,Laos).Palaeoworld,25(3):425-430
    Zhao Y J,Zhang H,Liu C L,Liu B K,Ma L C,Wang L C.2014.Late Eocene to early Oligocene quantitative paleotemperature record:Evidence from continental halite fluid inclusions.Scientific Reports,4:5776
    Zhuo Q G,Meng F W,Song Y,Yang H J,Li Y,Ni P.2014.Hydrocarbon migration through salt:Evidence from Kelasu tectonic zone of Kuqa foreland basin in China.Carbonates and Evaporites,29(3):291-297
    蔡习尧,李越,钱一雄,李启剑,张园园.2010.塔里木板块巴楚隆起区寒武系盐下勘探潜力分析.地层学杂志,34(3):283-288
    蔡习尧,毛树华,钱一雄,陈跃,尤东华.2012.塔里木盆地巴楚隆起寒武系划分与对比.新疆石油地质,30(1):38-42
    陈郁华,袁鹤然,杜之岳.1998.陕北奥陶系钾盐层位的发现与研究.地质论评,44(1):100-105
    程怀德,马海州.2013.显生宙以来海水组分变化对海相钾盐蒸发岩的制约作用.矿物岩石地球化学通报,32(5):609-618
    冯晓杰,渠永宏,王洪江.1999.中国东部早第三纪海侵问题的研究.西安工程学院学报,21(3):9-12
    刘成林,陈永志,焦鹏程,李荫清,王弭力.2005.罗布泊卤水室内蒸发及天然石盐包裹体均一温度分析探讨.东华理工大学学报(自然科学版),28(4):306-312
    刘成林,陈永志,称伟十,焦鹏程,王弭力,李树德.2006.罗布泊盐湖更新世晚期沉积钙芒硝包裹体特征及古气候意义探讨.矿物学报,26(1):93-98
    刘莉.2011.江汉盆地海相探区中寒武统盐下层勘探潜力浅析.海相油气地质,16(1):26-32
    刘兴起,倪培.2005.表生环境条件形成的石盐流体包裹体研究进展.地球科学进展,20(8):856-862
    孟凡巍,倪培,葛晨东,王天刚,王国光,刘吉强,赵超.2011a.实验室合成石盐包裹体的均一温度以及古气候意义.岩石学报,27(5):1543-1547
    孟凡巍,倪培,严贤勤,王天刚,燕夔,王国光,赵超,宋伟民.2011b.江苏金坛盐矿形成时期盐湖水体成分:来自石盐包裹体的证据.微体古生物学报,28(3):324-328
    孟凡巍,刘成林,倪培.2012.全球古海水化学演化与世界主要海相钾盐沉积关系暨中国海相成钾探讨.微体古生物学报,29(1):62-69
    倪培,范宏瑞,丁俊英.2014.流体包裹体研究进展.矿物岩石地球化学通报,33(1):1-5
    唐学远,孙波,李院生,崔祥斌,李鑫.2012.冰穹A冰川学研究进展及深冰芯计划展望.极地研究,24(1):77-86
    童国榜,刘志明,郑绵平,袁鹤然,刘俊英,王伟铭,李月丛.2002.江汉盆地始新世中、晚期古气候定量重建初探.地球科学,27(4):446-452
    王立成,刘成林,张华.2013.华南地块震旦纪晚期-早寒武世古大陆位置暨灯影组蒸发岩成钾条件分析.地球学报,34(5):585-593
    王仪诚,陈永祥.1992.苏北盆地早第三纪海侵析疑.石油学报,13(2):137-142
    魏东岩.1999.中国石盐矿床之分类.化工矿产地质,21(4):201-208
    薛武.1986.我国石膏矿产时空分布概况及成矿特点初探.中国非金属矿工业导刊,(4):31-35
    杨吉根.1994.我国东南四省五个岩盐矿床石盐中流体包裹体的初步研究.盐湖研究,2(3):1-9
    杨全喜,李江.1993.陕北奥陶系首次发现钾石盐.化工地质,15(4):223-227
    袁见齐,蔡克勤,肖荣阁,陈卉泉.1991.云南勐野井钾盐矿床石盐中包裹体特征及其成因的讨论.地球科学-中国地质大学学报,16(2):137-142
    张芳,耿文辉,王滋平.2001.兰坪-思茅盆地石盐矿床盐矿物包裹体特征.矿产与地质,15(2):113-115
    张智礼,孟凡巍,蔡习尧,倪培,李林,欧志吉.2013.新疆塔里木板块巴楚隆起区寒武系石盐氯同位素研究.微体古生物学报,30(3):239-243
    郑绵平,齐文,张永生.2005.中国钾盐地质资源现状与找钾方向初步分析.地质通报,25(11):1239-1246
    裘松余,卢兵力,陈永成.1994.中国东部晚白垩世至早第三纪海侵.海洋地质与第四纪地质,14(1):97-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700