用户名: 密码: 验证码:
Type 0092丝状菌污泥微膨胀在短程硝化中的实现
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Realization of Limited Filamentous Bulking with Type 0092 Filamentous Bacteria as the Dominant Filamentous Bacteria in Shortcut Nitrification
  • 作者:高春娣 ; 安冉 ; 韩徽 ; 张娜 ; 任浩 ; 赵楠 ; 焦二龙 ; 彭永臻
  • 英文作者:GAO Chun-di;AN Ran;HAN Hui;ZHANG Na;REN Hao;ZHAO Nan;JIAO Er-long;PENG Yong-zhen;National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology,College of Environmental and Energy Engineering,Beijing University of Technology;Beijing Drainage Group CO.,Ltd.;
  • 关键词:节能 ; 低溶解氧 ; 缺好氧交替 ; Type ; 0092丝状菌 ; 污泥微膨胀 ; 短程硝化
  • 英文关键词:energy saving;;low dissolved oxygen;;alternate anoxic/aerobic mode;;Type 0092 filamentous bacteria;;limited filamentous bulking;;shortcut nitrification
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:北京工业大学环境与能源工程学院城镇污水深度处理与资源化利用技术国家工程实验室;北京排水集团;
  • 出版日期:2019-03-26 15:25
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51478012);; 北京市科技重大专项(Z181100005318001)
  • 语种:中文;
  • 页:HJKZ201908039
  • 页数:8
  • CN:08
  • ISSN:11-1895/X
  • 分类号:328-335
摘要
利用Type 0092丝状菌不易引发污泥恶性膨胀的特点,本实验采用实际生活污水,以SBR反应器接种短程硝化污泥,考察了短程硝化状态下启动Type 0092丝状菌污泥微膨胀的特性,研究了系统启动与维持期间的污泥沉降性能、亚硝酸盐积累率(NAR)、污染物去除特性以及污泥菌群结构变化情况.结果表明控制DO为0. 3~0. 8 mg·L~(-1),F/M(以COD/MLSS计)=0. 24 kg·(kg·d)~(-1),按照交替缺氧/好氧模式运行(单周期3次,缺氧∶好氧=20 min∶60 min),能够启动Type 0092丝状菌污泥微膨胀与短程硝化耦合,系统SVI值维持在180 m L·g~(-1)左右,NAR一直维持在99%左右,COD和TN去除率能够分别提高约13%和5%,相较于传统全程硝化非微膨胀状态曝气量能节省约62. 5%.当交替缺氧/好氧模式变为单周期交替6次,缺氧∶好氧=10 min∶30 min,亚硝酸盐氧化菌(NOB)的活性会恢复,使短程硝化被破坏;低溶解氧、交替缺氧/好氧、低负荷是实现Type 0092丝状菌污泥微膨胀的关键因素,当负荷(以COD/MLSS计)大于0. 25 kg·(kg·d)~(-1)时,仅靠低溶解氧和间歇曝气无法维持污泥微膨胀状态.
        Type 0092 filamentous bacteria generally do not result in excessive sludge bulking. To take advantage of this,domestic sewage was used to inoculate shortcut nitrification sludge in a sequencing batch reactor( SBR). Sludge settleability,the nitrite accumulation ratio( NAR),pollutant removal characteristics,and the dynamic variation of microbial communities during the system startup and maintenance were investigated. The results indicated that limited filamentous bulking( LFB) with Type 0092 filamentous bacteria combined with shortcut nitrification could be achieved under alternating anoxic and aerobic( four times/cycle; the ratio of anoxic/aerobic was 20 min/60 min) with low dissolved oxygen( DO) content( 0. 3-0. 8 mg·L~(-1)) and a low food/microorganism( F/M) ratio [0. 24 kg·( kg·d)~(-1),COD/MLSS]. The removal rate of COD and total nitrogen( TN) were increased by 13% and 5%when the sludge volume index( SVI) and NAR were maintained at approximately 180 m L·g~(-1) and 99%,respectively,and aeration consumption was reduced by 62. 5% compared to general whole-run nitrification. When the ratio of anoxic/aerobic changed to be 10 min/30 min as alternating times increased to 6 times per cycle,the activity of the nitrite oxidizing bacteria( NOB) recovered,causing shortcut nitrification to be destroyed. In addition,low DO,alternate anoxic/aerobic modes,and low loading rates were the key factors in achieving LFB with Type 0092 filamentous bacteria as the dominant filamentous bacteria. Limited filamentous bulking could not be maintained under low DO and alternating anoxic/aerobic conditions with loading rates above 0. 25 kg·( kg·d)~(-1),COD/MLSS.
引文
[1]Wang P,Yu Z S,Zhao J H,et al.Seasonal changes in bacterial communities cause foaming in a wastewater treatment plant[J].Microbial Ecology,2016,71(3):660-671.
    [2]Zhang C Y,Zhang H M,Yang F L.Granulation of nonfilamentous bulking sludge directed by p H,ORP and DO in an anaerobic/aerobic/anoxic SBR[J].Applied Biochemistry and Biotechnology,2016,178(1):184-196.
    [3]陈燕,刘国华,范强,等.不同溶解氧条件下A/O系统的除碳脱氮效果和细菌群落结构变化[J].环境科学,2015,36(7):2610-2616.Chen Y,Liu G H,Fan Q,et al.Carbon/nitrogen removal and bacterial community structure change in an A/O activated sludge system under different dissolved oxygen conditions[J].Environmental Science,2015,36(7):2610-2616.
    [4]彭永臻,郭建华,王淑莹,等.低溶解氧污泥微膨胀节能理论与方法的发现、提出及理论基础[J].环境科学,2008,29(12):3342-3347.Peng Y Z,Guo J H,Wang S Y,et al.Energy saving achieved by limited filamentous bulking under low dissolved oxygen:derivation,originality and theoretical basis[J].Environmental Science,2008,29(12):3342-3347.
    [5]Guo J H,Peng Y Z,Peng C Y,et al.Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen[J].Bioresource Technology,2010,101(4):1120-1126.
    [6]Jiang Y S,Poh L S,Lim C P,et al.Impact of free nitrous acid shock and dissolved oxygen limitation on nitritation maintenance and nitrous oxide emission in a membrane bioreactor[J].Science of the Total Environment,2019,660:11-17.
    [7]Guo J H,Peng Y Z,Yang X,et al.Combination process of limited filamentous bulking and nitrogen removal via nitrite for enhancing nitrogen removal and reducing aeration requirements[J].Chemosphere,2013,91(1):68-75.
    [8]彭赵旭,彭永臻,左金龙,等.污泥微膨胀状态下短程硝化的实现[J].环境科学,2009,30(8):2309-2314.Peng Z X,Peng Y Z,Zuo J L,et al.Realization of short cut nitrification under the limited filamentous sludge bulking condition[J].Environmental Science,2009,30(8):2309-2314.
    [9]Kragelund C,Levantesi C,Borger A,et al.Identity,abundance and ecophysiology of filamentous bacteria belonging to the Bacteroidetes present in activated sludge plants[J].Microbiology,2008,154(3):886-894.
    [10]Nielsen P H,Kragelund C,Seviour R J,et al.Identity and ecophysiology of filamentous bacteria in activated sludge[J].FEMS Microbiology Reviews,2009,33(6):969-998.
    [11]Noutsopoulos C,Mamais D,Andreadakis A.A hypothesis on Microthrix parvicella proliferation in biological nutrient removal activated sludge systems with selector tanks[J].FEMSMicrobiology Ecology,2012,80(2):380-389.
    [12]王永磊,刘宝震,张克峰.厌氧氨氧化脱氮工艺研究进展[J].山东建筑大学学报,2016,31(3):259-269.Wang Y L,Liu B Z,Zhang K F.Research progress of biological nitrogen removal from sewage via anammox[J].Journal of Shandong Institute of Architecture and Engineering,2016,31(3):259-269.
    [13]Welz P J,Esterhuysen A,Vulindlu M,et al.Filament identification and dominance of Eikelboom type 0092 in activated sludge from wastewater treatment facilities in Cape Town,South Africa[J].Water SA,2014,40(4):649-658.
    [14]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [15]Speirs L,Nittami T,Mc Ilroy S,et al.Filamentous bacterium Eikelboom type 0092 in activated sludge plants in Australia is a member of the phylum Chloroflexi[J].Applied and Environmental Microbiology,2009,75(8):2446-2452.
    [16]Amann R I,Binder B J,Olson R J,et al.Combination of 16SrRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations[J].Applied and Environmental Microbiology,1990,56(6):1919-1925.
    [17]Daims H,Brühl A,Amann R,et al.The domain-specific probe EUB338 is insufficient for the detection of all Bacteria:development and evaluation of a more comprehensive probe set[J].Systematic and Applied Microbiology,1999,22(3):434-444.
    [18]Koike S,Krapac I G,Oliver H D,et al.Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period[J].Applied and Environmental Microbiology,2007,73(15):4813-4823.
    [19]Wang S Y,Wang Y,Feng X J,et al.Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China[J].Applied Microbiology and Biotechnology,2011,90(2):779-787.
    [20]Ahn J H,Yu R,Chandran K.Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification bioreactor[J].Biotechnology and Bioengineering,2008,100(6):1078-1087.
    [21]Wang F,Liu Y,Wang J H,et al.Influence of growth manner on nitrifying bacterial communities and nitrification kinetics in three lab-scale bioreactors[J].Journal of Industrial Microbiology&Biotechnology,2012,39(4):595-604.
    [22]Alawi M,Lipski A,Sanders T,et al.Cultivation of a novel coldadapted nitrite oxidizing betaproteobacterium from the Siberian Arctic[J].The ISME Journal,2007,1(3):256-264.
    [23]田文德,李伟光,张卉,等.两级生物选择同步除磷脱氮新工艺[J].中国环境科学,2012,32(2):221-225.Tian W D,Li W G,Zhang H,et al.Bi-bio-selective simultaneous phosphorus and nitrogen removal(BBSPN)novel process[J].China Environmental Science,2012,32(2):221-225.
    [24]彭赵旭.污泥微膨胀低能耗方法的基础研究[D].哈尔滨:哈尔滨工业大学,2008.22-40.
    [25]吴军,张悦,徐婷,等.AOB溶解氧亲和力低于NOB条件下序批反应器中NOB淘汰的实现机制[J].中国环境科学,2016,36(12):3583-3590.Wu J,Zhang Y,Xu T,et al.Mechanisms of partial nitrification in sequencing batch reactor under the condition of AOB oxygen affinity lower than NOB[J].China Environmental Science,2016,36(12):3583-3590.
    [26]Daims H,Lebedeva E V,Pjevac P,et al.Complete nitrification by Nitrospira bacteria[J].Nature,2015,528(7583):504-509.
    [27]郭建华,王淑莹,彭永臻,等.低溶解氧污泥微膨胀节能方法在A/O中的试验验证[J].环境科学,2008,29(12):3348-3352.Guo J H,Wang S Y,Peng Y Z,et al.Energy saving achieved by limited filamentous bulking under low dissolved oxygen:experimental validation in A/O process[J].Environmental Science,2008,29(12):3348-3352.
    [28]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700