用户名: 密码: 验证码:
基于MOD16产品的怒江流域中上游蒸散发分布特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial Distribution of Evapotranspiration in Middle and Upper Nujiang River Basin Based on MOD16 Products
  • 作者:范雪梅 ; 罗贤 ; 季漩 ; 李运刚 ; 黄江成
  • 英文作者:Fan Xuemei;Luo Xian;Ji Xuan;Li Yungang;Huang Jiangcheng;Asian International Rivers Center of Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-security;
  • 关键词:蒸散发 ; MOD16 ; TRMM3B43 ; 青藏高原 ; 怒江流域中上游
  • 英文关键词:evapotranspiration;;MOD16;;TRMM3B43;;Tibetan Plateau;;middle and upper Nujiang River basin
  • 中文刊名:STTB
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:云南大学亚洲国际河流中心/云南省国际河流与跨境生态安全重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:水土保持通报
  • 年:2019
  • 期:v.39;No.229
  • 基金:国家自然科学基金项目“怒江流域中上游水文过程对土壤冻融循环变化的响应机制”(41601026),“怒江上游流域冰雪融水—径流过程及影响机制研究(41561003)”;; 云南省科技计划项目“气候变化驱动下怒江流域水文过程响应机制研究”(2017FB073)
  • 语种:中文;
  • 页:STTB201902032
  • 页数:8
  • CN:02
  • ISSN:61-1094/X
  • 分类号:2+205-211
摘要
[目的]研究怒江流域中上游蒸散发的空间分布特征,为流域水资源合理开发及生态保护提供支撑。[方法]利用气象站点实测降水资料,验证TRMM(tropical rainfall measuring mission)3B43产品在怒江流域中上游的精度,进而对MODIS(moderate-resolution imagine spectroradiometer)全球陆地蒸散发产品(MOD16)在该流域的适用性进行检验。在此基础上,探讨该流域蒸散发及产水量的空间分布特征。[结果]①TRMM3B43数据与站点实测月降水量相关系数R为0.86,在怒江流域中上游使用具有较好精度,MOD16蒸散发量相对偏大,但仍具有一定的适用性;②研究区多年平均蒸散发量为489.4 mm,蒸散发主要集中在300~800 mm;③降水量与蒸散发量的差值(P-E)与降水量(P)的空间分布格局相似,(P-E)/P在无植被地区较大(为0.33),在植被覆盖区相对较小。[结论]研究区多年平均蒸散发量空间分布差异较大,沿河流呈现出低—高—低—高的变化规律;MOD16产品具有覆盖范围广,时空上连续等特点,能够为缺资料地区蒸散发的相关研究提供相对可靠的数据支撑。
        [Objective] The spatial distribution characteristics were studied in order for rational utilization of water resources utilization and ecological protection in the middle and upper Nujiang River Basin. [Methods] Making use of observations from meteorological stations, the performance of TRMM(tropical rainfall measuring mission) 3 B43 product in the middle and upper Nujiang River Basin was verified, and then the applicability of MOD16(moderate-resolution imagine spectroradiometer) products were further examined. The spatial distribution characteristics of evapotranspiration and water yield were analyzed.[Results] ① At monthly scale, the correlation coefficient between TRMM 3 B43 estimates and rain gauge observations was 0.86, indicating TRMM 3 B43 data had good accuracy in the middle and upper Nujiang River Basin. The evapotranspiration obtained from MOD16 data was higher, but still had applicability. ② The mean annual evapotranspiration in the study area mainly ranged from 300 to 800 mm, and the regional mean value was 489.4 mm. ③ The spatial distribution of(P-E) was similar to that of P, while(P-E)/P(0.33) in barren areas and smaller in vegetation-covered areas. [Conclusion] The spatial distribution of evapotranspiration was heterogeneous, showing a low-high-low-high variation along the river. With widespread coverage and continuous observation, MOD16 products could provide reliable support for evapotranspiration research in lack-data watershed.
引文
[1] Jung M,Reichstein M,Ciais P,et al.Recent decline in the global land evapotranspiration trend due to limited moisture supply[J].Nature,2010,467(7318):951-954.
    [2] Allen R G,Pereira L S,Howell T A,et al.Evapotranspiration information reporting(I):Factors governing measurement accuracy[J].Agricultural Water Management,2011,98(6):899-920.
    [3] Li Zhaoliang,Tang Ronglin,Wan Zhengming,et al.A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J].Sensors,2009,9(5):3801-3853.
    [4] Chen Yang,Xia Jiangzhou,Liang Shunlin,et al.Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China[J].Remote Sensing of Environment,2014,140(140):279-293.
    [5] 冯松,汤懋苍,王冬梅.青藏高原是我国气候变化启动区的新证据[J].科学通报,1998,43(6):633-636.
    [6] 梁小文,杨梅学,万国宁,等.青藏高原气温序列的均一性研究[J].冰川冻土,2015,37(2):275-285.
    [7] 郑然,李栋梁,蒋元春.全球变暖背景下青藏高原气温变化的新特征[J].高原气象,2015,34(6):1531-1539.
    [8] Liu Xiaomang,Zheng Hongxing,Zhang Minghua,et al.Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau[J].Journal of geographical sciences,2011,21(4):594-608.
    [9] 中国科学院青藏高原综合科学考察队.西藏河流与湖泊[M].北京:科学出版社,1984.
    [10] 罗贤,何大明,季漩,等.近50年怒江流域中上游枯季径流变化及其对气候变化的响应[J].地理科学,2016,36(1):107-113.
    [11] 杜军,翁海卿,袁雷,等.近40年西藏怒江河谷盆地的气候特征及变化趋势[J].地理学报,2009,64(5):581-591.
    [12] 周刊社,杜军,袁雷,等.西藏怒江流域高寒草甸气候生产潜力对气候变化的响应[J].草业学报,2010,64(5):17-24.
    [13] 刘冬英,沈燕舟,王政祥.怒江流域水资源特性分析[J].人民长江,2008,39(17):64-66.
    [14] Huffman G J,Adler R F,Bolvin D T,et al.The TRMM multisatellite precipitation analysis(TMPA):Quasi-global,multiyear,combined-sensor precipitation estimates at fine scales[J].Journal of Hydrometeorology,2007,8(1):38-55.
    [15] 谢红霞,刘旭星,隋兵,等.TRMM降雨数据在湖南省长株潭地区的适用性[J].水土保持通报.2017,37(3):295-301.
    [16] 齐文文,张百平,庞宇,等.基于TRMM数据的青藏高原降水的空间和季节分布特征[J].地理科学,2013,33(8):999-1005.
    [17] 程珂,朱祯,李铭,等.TRMM3B43降水产品在西藏地区的精度检验和应用[J].水利水电技术,2014,45(1):44-46.
    [18] Mu Qiaozhen,Heinsch F A,Zhao Maosheng,et al.Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J].Remote sensing of Environment,2007,111(4):519-536.
    [19] Mu Qiaozhen,Zhao Maosheng,Running S W.Improvements to a MODIS global terrestrial evapotranspiration algorithm[J].Remote Sensing of Environment,2011,115(8):1781-1800.
    [20] 吴桂平,刘元波,赵晓松,等.基于MOD16产品的鄱阳湖流域地表蒸散量时空分布特征[J].地理研究,2013,32(4):617-627.
    [21] 贺添,邵全琴.基于MOD16产品的我国2001—2010年蒸散发时空格局变化分析[J].地球信息科学学报,2014,16(6):979-988.
    [22] 赫晓慧,梁冰洁,郭恒亮,等.基于MOD16的北洛河流域蒸散发空间格局演变研究[J].水土保持通报,2017,37(1):177-182.
    [23] 宋璐璐.青藏高原蒸散发时空变化特征研究[D].北京:中国科学院地理科学与资源研究所,2013.
    [24] 杨大文,杨汉波,雷慧闽.流域水文学[M].北京:清华大学出版社,2014.
    [25] 刘国纬.西藏高原的水文特征[J].水利学报,1992(5):1-8.
    [26] 杜军,房世波,唐小萍,等.1981—2010年西藏怒江流域潜在蒸发量的时空变化[J].气候变化研究进展,2012,8(1):35-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700