用户名: 密码: 验证码:
微小RNA和胆固醇稳态研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on MiRNA and Cholesterol Homeostasis
  • 作者:孙焕平 ; 王凯
  • 英文作者:Sun Huanping;Wang Kai;College of Sport Science, Qufu Normal University;
  • 关键词:miRNA ; 胆固醇代谢 ; 转录因子 ; 代谢性疾病
  • 英文关键词:miRNA;;cholesterol metabolism;;transcription factors;;metabolic diseases
  • 中文刊名:SPOR
  • 英文刊名:Bulletin of Sport Science & Technology
  • 机构:曲阜师范大学体育科学学院;
  • 出版日期:2019-06-10 09:47
  • 出版单位:体育科技文献通报
  • 年:2019
  • 期:v.27;No.319
  • 基金:中国博士后科学基金会资助(项目编号:2014M560538)
  • 语种:中文;
  • 页:SPOR201906014
  • 页数:4
  • CN:06
  • ISSN:11-3262/G8
  • 分类号:37-40
摘要
微小RNA(microRNA,miRNA)是一类参与基因表达的表观遗传调节因子。它们通过复杂的交互作用机制涉及基因调控网络,系统地参与脂质代谢的调控。因此,miRNA能够有效改善有缺陷的脂代谢和代谢性疾病发生。在这里,我们综述了近年来脂质感应转录因子调节miRNA基因网络的作用,以及miRNA在胆固醇代谢中的表达以及功能方面最新研究进展。
        MicroRNAs( miRNAs) are a class of epigenetic regulators involved in gene expression. They involve gene regulatory networks through complex interaction mechanisms and are systematically involved in the regulation of lipid metabolism. Here,we review recent advances in the role of lipid-induced transcription factors in regulating miRNA gene networks,as well as the expression and function of miRNAs in cholesterol metabolism.
引文
[1]Gulati M.,Merz C.N.Advances in lipid therapy:The role of lipid treatment in women in primary prevention[J].Prog Cardiovasc Dis,2016,59(2):178-189.
    [2]Wei Y.,Zhu M.,Schober A.Macrophage micrornas as therapeutic targets for atherosclerosis,metabolic syndrome,and cancer[J].Int JMol Sci,2018,19(6).
    [3]Osborne T.F.,Espenshade P.J.Evolutionary conservation and adaptation in the mechanism that regulates srebp action:What a long,strange trip it's been[J].Genes Dev,2009,23(22):2578-91.
    [4]Jeon T.I.,Osborne T.F.Srebps:Metabolic integrators in physiology and metabolism[J].Trends Endocrinol Metab,2012,23(2):65-72.
    [5]Chien C.H.,Chiang-Hsieh Y.F.,Chen Y.A.,etc.Atmirnet:A web-based resource for reconstructing regulatory networks of arabidopsis micrornas[J].Database(Oxford),2015,2015:bav042.
    [6]Huntzinger E.,Izaurralde E.Gene silencing by micrornas:Contributions of translational repression and mrna decay[J].Nat Rev Genet,2011,12(2):99-110.
    [7]Bartel D.P.Micrornas:Genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-97.
    [8]Haurie V.,Durrieu-Gaillard S.,Dumay-Odelot H.,etc.Two isoforms of human rna polymerase iii with specific functions in cell growth and transformation[J].Proc Natl Acad Sci U S A,2010,107(9):4176-81.
    [9]Fressigne L.,Simard M.J.[biogenesis of small non-coding rnas in animals][J].Med Sci(Paris),2018,34(2):137-144.
    [10]Megraw M.,Cumbie J.S.,Ivanchenko M.G.,etc.Small genetic circuits and micrornas:Big players in polymerase ii transcriptional control in plants[J].Plant Cell,2016,28(2):286-303.
    [11]Bouvy-Liivrand M.,Hernandez de Sande A.,Polonen P.,etc.Analysis of primary microrna loci from nascent transcriptomes reveals regulatory domains governed by chromatin architecture[J].Nucleic Acids Res,2017,45(17):9837-9849.
    [12]Marson A.,Levine S.S.,Cole M.F.,etc.Connecting microrna genes to the core transcriptional regulatory circuitry of embryonic stem cells[J].Cell,2008,134(3):521-33.
    [13]Jeon T.I.,Esquejo R.M.,Roqueta-Rivera M.,etc.An srebp-responsive microrna operon contributes to a regulatory loop for intracellular lipid homeostasis[J].Cell Metab,2013,18(1):51-61.
    [14]Miao J.,Ling A.V.,Manthena P.V.,etc.Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis[J].Nat Commun,2015,6:6498.
    [15]Ng R.,Wu H.,Xiao H.,etc.Inhibition of microrna-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia[J].Hepatology,2014,60(2):554-64.
    [16]Smith E.M.,Zhang Y.,Baye T.M.,etc.Insig1 influences obesity-related hypertriglyceridemia in humans[J].J Lipid Res,2010,51(4):701-8.
    [17]Yang M.,Liu W.,Pellicane C.,etc.Identification of mir-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake[J].J Lipid Res,2014,55(2):226-38.
    [18]Rayner K.J.,Esau C.C.,Hussain F.N.,etc.Inhibition of mir-33a/b in non-human primates raises plasma hdl and lowers vldl triglycerides[J].Nature,2011,478(7369):404-7.
    [19]Auguet T.,Aragones G.,Berlanga A.,etc.Mir33a/mir33b*and mir122 as possible contributors to hepatic lipid metabolism in obese women with nonalcoholic fatty liver disease[J].Int J Mol Sci,2016,17(10).
    [20]Pruis M.G.,Lendvai A.,Bloks V.W.,etc.Maternal western diet primes non-alcoholic fatty liver disease in adult mouse offspring[J].Acta Physiol(Oxf),2014,210(1):215-27.
    [21]Walker A.K.,Yang F.,Jiang K.,etc.Conserved role of sirt1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator srebp[J].Genes Dev,2010,24(13):1403-17.
    [22]Nogueiras R.,Habegger K.M.,Chaudhary N.,etc.Sirtuin 1 and sirtuin 3:Physiological modulators of metabolism[J].Physiol Rev,2012,92(3):1479-514.
    [23]Castro R.E.,Ferreira D.M.,Afonso M.B.,etc.Mir-34a/sirt1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease[J].J Hepatol,2013,58(1):119-25.
    [24]Vickers K.C.,Landstreet S.R.,Levin M.G.,etc.Microrna-223 coordinates cholesterol homeostasis[J].Proc Natl Acad Sci US A,2014,111(40):14518-23.
    [25]Bielicki J.K.Abca1 agonist peptides for the treatment of disease[J].Curr Opin Lipidol,2016,27(1):40-6.
    [26]Islam R.M.,Pourmousa M.,Sviridov D.,etc.Structural properties of apolipoprotein a-i mimetic peptides that promote abca1-dependent cholesterol efflux[J].Sci Rep,2018,8(1):2956.
    [27]Najafi-Shoushtari S.H.,Kristo F.,Li Y.,etc.Microrna-33and the srebp host genes cooperate to control cholesterol homeostasis[J].Science,2010,328(5985):1566-9.
    [28]Rayner K.J.,Sheedy F.J.,Esau C.C.,etc.Antagonism of mir-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis[J].J Clin Invest,2011,121(7):2921-31.
    [29]Rotllan N.,Price N.,Pati P.,etc.Micrornas in lipoprotein metabolism and cardiometabolic disorders[J].Atherosclerosis,2016,246:352-60.
    [30]Moschetta A.Nuclear receptors and cholesterol metabolism in the intestine[J].Atheroscler Suppl,2015,17:9-11.
    [31]Sun D.,Zhang J.,Xie J.,etc.Mir-26 controls lxr-dependent cholesterol efflux by targeting abca1 and arl7[J].FEBS Lett,2012,586(10):1472-9.
    [32]Ramirez C.M.,Rotllan N.,Vlassov A.V.,etc.Control of cholesterol metabolism and plasma high-density lipoprotein levels by microrna-144[J].Circ Res,2013,112(12):1592-601.
    [33]de Aguiar Vallim T.Q.,Tarling E.J.,Kim T.,etc.Microrna-144 regulates hepatic atp binding cassette transporter a1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid x receptor[J].Circ Res,2013,112(12):1602-12.
    [34]Velagapudi S.,Yalcinkaya M.,Piemontese A.,etc.Vegf-a regulates cellular localization of sr-bi as well as transendothelial transport of hdl but not ldl[J].Arterioscler Thromb Vasc Biol,2017,37(5):794-803.
    [35]Wang L.,Jia X.J.,Jiang H.J.,etc.Micrornas 185,96,and223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition[J].Mol Cell Biol,2013,33(10):1956-64.
    [36]Zhai L.,Li Y.,Lan X.,etc.Microrna-10a-5p suppresses cancer proliferation and division in human cervical cancer by targeting bdnf[J].Exp Ther Med,2017,14(6):6147-6151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700