用户名: 密码: 验证码:
CuO强化MFC活化过硫酸盐降解偶氮染料废水及同步产电研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on persulfate activated by microbial fuel cell and enhanced by CuO to degrade methyl orange and simultaneous electricity generation
  • 作者:冯俊生 ; 姚海祥 ; 蔡晨 ; 申荣艳 ; 王晓红 ; 张郓
  • 英文作者:FENG Junsheng;YAO Haixiang;CAI Chen;SHEN Rongyan;WANG Xiaohong;ZHANG Yun;School of Environmental and Safety Engineering, Changzhou University;
  • 关键词:微生物燃料电池 ; 氧化铜 ; 过硫酸盐 ; 甲基橙 ; 同步产电 ; 硫酸根自由基
  • 英文关键词:microbial fuel cell;;CuO;;persulfate;;methyl orange;;simultaneous electricity generation;;sulfate radical
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:常州大学环境与安全工程学院;
  • 出版日期:2019-01-16 16:11
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:江苏省学产研前瞻性联合研究项目(No.BY2015027-06)
  • 语种:中文;
  • 页:HJXX201904015
  • 页数:9
  • CN:04
  • ISSN:11-1843/X
  • 分类号:147-155
摘要
利用CuO强化微生物燃料电池(MFC)活化过硫酸盐(PDS),提高MFC对偶氮染料的降解率及同步产电性能.考察初始pH、CuO浓度、PDS浓度等因素对降解率及同步产电的影响.实验结果表明,最佳反应条件:初始pH为3.0,CuO浓度为0.6 mmol·L~(-1),PDS浓度为2 mmol·L~(-1)时,反应4 h后MO降解率达到99.3%.比未投加CuO时MO降解率提高12.8%;MFC最大输出功率密度从53.0 mW·m~(-2)增大到103.5 mW·m~(-2),输出功率密度提高1.95倍;对应的表观内阻从484.1Ω减小到318.6Ω,下降幅度达到34.1%.降解机理研究表明,MO降解过程中的主要活性物质为SO~-_4·和少量·OH.反应前后水样的紫外-可见光谱对比显示,MO降解过程中偶氮键率先断裂,然后生成含苯环类的中间产物,最终得到矿化.
        The persulfate(PDS) activated by microbial fuel cell(MFC) and enhanced by CuO was used to improve the degradation of methyl orange(MO) and simultanuous power generation. The effects of initial pH, CuO concentration and PDS concentration on degradation rate and simultaneous electricity generation were investigated. The experimental results show that the optimal reaction conditions were as follows: under initial pH 3.0, CuO concentration at 0.6 mmol·L~(-1), PDS concentration at 2 mmol·L~(-1), the degradation rate of methyl orange(MO) reached 99.3 % after 4 h, 12.8% higher than that without CuO. The maximum output power of MFC increased by 1.95 times, from 53.0 mW·m~(-2) to 103.5 mW·m~(-2). The corresponding apparent resistance reduced from 484.1 Ω to 318.6 Ω,with a drop of 34.1%. Previous studies have found that the main active substances in the process of MO degradation were SO■ and a small amount of ·OH. The UV-visible spectrum of the samples before and after the reaction shows that during the degradation of MO, the azo bond was first broken, forming the intermediate products containing benzene rings, which were finally mineralized.
引文
毕晨,施周,周石庆,等.2017.EGCG强化Fe2+/过硫酸盐体系降解金橙G的研究[J].中国环境科学,37(10):3722-3728
    Chen W S,Huang C P,Chin P,et al.2015.Mineralization of aniline in aqueous solution by electrochemical activation of persulfate[J].Chemosphere,125:175-181
    曹效鑫,梁鹏,黄霞,等.2006.“三合一”微生物燃料电池的产电特性研究[J].环境科学学报,26(8):1252-1257
    Cao Y Q,Gao N Y,Deng Y,et al. 2012. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water[J]. Chemical Engineering Journal,195:248-253
    付乾,李俊,廖强,等.2009.过硫酸钾为电子受体的微生物燃料电池性能特性[J].工程热物理学报,30(8):1396-1398
    Ghauch A,Tuqan A M,Kibbi N.2012.Ibuprofen removal by heated persulfate in aqueous solution: A kinetics study[J].Chemical Engineering Journal,197:483-492
    Gao H P,Chen J B,Zhang Y L,et al.2016. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system[J].Chemical Engineering Journal,306:522-530
    高乃云,朱延平,谈超群,等.2013.热活化过硫酸盐氧化降解敌草隆[J].华南理工大学学报(自然科学版),41(12):36-42
    孔令国,王玲,薛建国,等.2010.负载型三维粒子电极降解甲基橙模拟废水研究[J].中国环境科学,30(4):516-521
    孔晓英,李连华,马隆龙,等.2012.不同膜微生物燃料电池的性能[J].太阳能学报,33(5):882-885
    Lin H,Wu J,Zhang H.2013.Degradation of bisphenol A in aqueous solution by a novel electro/Fe3+/ peroxydisulfate process[J].Separation & Purification Technology,117(4):18-23
    骆海萍,刘广立.张仁铎,等.2008.以苯酚为燃料的微生物燃料电池产电特性[J].环境科学学报,28(7):1279-1283
    Li J,Fu Q,Liao Q,et al.2009.Persulfate: A self-activated cathodic electron acceptor for microbial fuel cells[J].Journal of Power Sources,194(1):269-274
    Liu J L,Zhong S,Song Y P, et al.2018.Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation[J].Journal of Electroanalytical Chemistry,809:74-79
    Liu L,LI F B,Feng C H,et al.2009.Microbial fuel cell with an azo-dye-feeding cathode[J].Applied Microbiology and Biotechnology,85:175-183
    李明玉,尚薇,李心乐,等.2009.光电化学协同催化降解甲基橙的研究[J].中国环境科学,29(5):512-517
    梁鹏,范明志,曹效鑫,等.2007.微生物燃料电池表观内阻的构成和测量[J].环境科学,28(8):1894-1898
    李霞.2017.还原铁粉和活性炭活化过硫酸钠处理甲基橙废水的试验研究[D]. 郑州:郑州大学
    牟姝君,袁李秀,任月萍,等.2014.铜离子对双室微生物燃料电池电能输出的影响研究[J].环境科学,35(7):2791-2797
    Miran W,Jang J,Nawaz M,et al.2017.Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper[J].Chemosphere,189:134-142
    Nie M H,Yan C X,Li M,et al.2015.Degradation of chloramphenicol by persulfate activated by Fe2+ and zerovalent iron[J].Chemical Engineering Journal,279:507-515
    Richard J W,Mushtaque A,Amanda K H,et al. 2018. Persulfate activation by glucose for in situ chemical oxidation[J]. Water research,133:247-254
    唐琪,王玉如,郭菁豪,等.2017.CuO活化过硫酸盐对孔雀石绿的降解[J].环境工程学报,11(4):2084-2090
    Wang C W,Liang C J.2015.Oxidative degradation of TMAH solution with UV persulfate activation[J].Chemical Engineering Journal,254:472-478
    Wu Y L,Romian P,Marcello B,et al.2017.Activation of persulfate by Fe(III) species: Implications for 4-tert-butylphenol degradation[J].Journal of Hazardous Materials,322:380-386
    尤世界,赵庆良,姜瑶秋,等.2006.废水同步生物处理与生物燃料电池发电研究[J].环境科学,27(9):1786-1790
    Zhang H,Wang Z,Liu C,et al.2014.Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process[J].Chemical Engineering Journal,250:76-82
    张剑桥.2016.Cu2+强化Fe2+活化过硫酸盐降解苯酚的效能与机理研究[D]. 哈尔滨:哈尔滨工业大学
    郑垒,汪晓军,汪星志,等.2016.过硫酸盐-石灰苏打处理印染反渗透浓水研究[J].环境科学学报,36(1):166-171
    朱美月,刘维平.2017.铜离子为电子受体的MFC产电性能及废水处理[J].工业水处理,37(12):64-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700