用户名: 密码: 验证码:
复合TiO_2-Y_2O_3催化发光环氧丙烷气体传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Titanium Dioxide-Yttrium(Ⅲ)-Oxide Composite Based Cataluminescence Gas Sensor for Fast Detection of Propylene Oxide
  • 作者:李铭 ; 陈景业 ; 胡玉斐 ; 李攻科
  • 英文作者:LI Ming;CHEN Jing-Ye;HU Yu-Fei;LI Gong-Ke;School of Chemistry,Sun Yat-sen University;
  • 关键词:纳米TiO_2-Y_2O_3 ; 环氧丙烷 ; 催化发光 ; 气体传感器
  • 英文关键词:Nano-titanium dioxide-yttrium(Ⅲ)-oxide;;Propylene oxide;;Cataluminescence;;Gas sensor
  • 中文刊名:FXHX
  • 英文刊名:Chinese Journal of Analytical Chemistry
  • 机构:中山大学化学学院;
  • 出版日期:2019-02-15
  • 出版单位:分析化学
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金项目(Nos.21775167,21475153,21575167,21675178);; 广东省自然科学基金项目(No.2016A030313358);; 广东省公益研究与能力建设专项基金(No.2015A030401036);; 广州市民生科技重大专项资助项目(No.201604020165)资助~~
  • 语种:中文;
  • 页:FXHX201902005
  • 页数:7
  • CN:02
  • ISSN:22-1125/O6
  • 分类号:32-38
摘要
制备了TiO_2-Y_2O_3纳米复合材料,并研究了环氧丙烷在其表面产生的催化发光现象,基于此,研制了环氧丙烷催化发光传感器。此传感器对丙酮、乙醛、苯等常见的挥发性有机物没有响应,显示出良好的选择性。对复合物的不同氧化物比例及烧结温度进行优化,得到TiO_2与Y_2O_3质量比为1∶3、烧结温度为500℃时,催化材料性能最佳。在最优实验条件下,即197℃、波长490 nm及载气流速0.3 L/min时,催化化学发光强度与环氧丙烷浓度在4.5~1375 mg/L范围内呈现良好的线性关系,检出限(3σ)为1.25 mg/L。此传感器具有灵敏快速、操作简便等优点,采用此传感器实时监测熏蒸谷物中环氧丙烷残留量,结果与气相色谱法吻合,相对偏差为2.7%~4.9%,显示出此传感器良好的性能。对环氧丙烷催化氧化的机理进行了初步探讨。
        In this work,the cataluminescence (CTL) phenomenon of propylene oxide (PO) on the surface of nanocomposite TiO_2-Y_2O_3 (titanium dioxide-yttrium (Ⅲ)-oxide) was studied. It was found that the nanocomposite had high sensitivity and good selectivity for the detection of PO. The common volatile organic compounds such as acetone,acetaldehyde and benzene showed no response to the catalysis of TiO_2-Y_2O_3.Based on this phenomenon,a PO CTL sensor was designed. The ratio of TiO_2 and Y_2O_3,and the sintering temperatures of the composites were optimized. It was found that when the mass ratio of TiO_2 and Y_2O_3 was 1 ∶ 3 and the sintering temperature was 500℃,the catalytic materials showed the best performance. The temperature,wavelength and carrier gas flow rate of the CTL system were also optimized,and 197℃,490 nm and 0.3 L/min were selected as the optimal conditions. The quantitative analysis was performed under the optimized conditions and CTL intensity was linear with PO concentration in the range from 4.5 mg/L to 1375mg/L with a detection limit(3σ) of 1.25 mg/L. The sensor was used for quantitative analysis and real-time monitoring of PO residues in fumigation cereals. The result obtained by this CTL sensor was consistent with that by gas chromatography. The CTL sensor proposed here had many merits such as high sensitivity,rapidity and simple operation,and had potential application prospects in the rapid detection of PO in food. In addition,the mechanism of catalytic oxidation of PO was discussed as well.
引文
1 Mortensen K,Pedersen J S.Macromolecules,1993,26(4):4128-4135
    2 Chiappetta D A,Sosnik A.Eur.J.Pharm.Biopharm.,2007,66(3):303-317
    3 YANG Jun,GAO Lei,JIAO Lei,ZHOU Xu,GUO Wei-Hong,Polym.Mater.Sci.Eng.,2011,27(9):56-59杨俊,高磊,焦雷,周旭,郭卫红.高分子材料科学与工程,2011,27(9):56-59
    4 LI Li,LIU Tao,ZHANG Fan-Hua,REN Fang,WANG Yue-Jin.Plant Quarantine,2013,27(1):21-24李丽,刘涛,张凡华,任放,王跃进.植物检疫,2013,27(1):21-24
    5 Dunkelberg H.Brit.J.Cancer,1979,39(5):588-589
    6 Pero R W,Bryngelsson T,Widegren B,H9gstedt B,Welinder H.Mutat.Res-Gen.Tox.En.,1982,104:193-200
    7 Krost K J,Pellizzari E D,Walburn S G,Hubbard S A.Anal.Chem.,1982,54:810-817
    8 ZHANG Jing-Xuan,LI Hui,CAI Li-Peng,FAN Bin,ZHANG Yan.Chinese J.Anal.Chem.,2013,41(8):1293-1294张敬轩,李挥,蔡立鹏,范斌,张岩.分析化学,2013,41(8):1293-1294
    9 Russel J W.Environ.Sci.Technol.,1975,9:1175-1178
    10 Cao X L,Corriveau J.Food Addit.Contam.,2009,26(4):482-486
    11 Amoss C W,Slack R W,Taylor L R.J.Liq.Chromatogr.,1987,10(4):583-592
    12 Nakagawa M,Fujiwara N,Matsuura Y,Tomiyama T,Yamamoto I,Utsunomiya K,Wada T,Yamashita N,Yamashita Y,Bunseki Kagaku,1990,39(11):797-800
    13 DENG Hao,LV Yi.Chinese J.Anal.Chem.,2010,38(9):1277-1281邓灏,吕弋.分析化学,2010,38(9):1277-1281
    14 Cai P Y,Yi X F,Song H J,Lv Y.Anal.Bioanal.Chem.,2018:410(21):5113-5112
    15 Cai P Y,Song H J,Lv Y.Microchem.J.,2018,138:116-121
    16 Dong X Q,Su YY,Lu T,Zhang L C,Wu L Q,Lv Y.Sens.Actuators B,2017,258(1):349-357
    17 Wu L Q,Zhang L C,Sun M X,Liu R,Yu L Z,Lv Y.Anal.Chem.,2017,89(24):13666-13672
    18 Zeng B R,Zhang L C,Wu L Q,Su Y Y,Lv Y.Sens.Actuators B,2016,242:1086-1094
    19 Hu Y,Li L,Zhang L C,Lv Y.Sens.Actuators B,2017,239:1177-1184
    20 Zhang L J,He N,Shi W Y,Lv C.Anal.Bioanal.Chem.,2016,408(30):8787-8793
    21 Xia H,Zhou R H,Zheng C B,Wu P,Tian Y F,Hou X D.Analyst,2013,138(13):3687-3691
    22 Zhou K W,Cheng Y L,Yang H W,Gu C X,Xiao Y,Zhao M H.Sens.Actuators B,2014,202(4):721-726
    23 Song H J,Zhang L C,He C L,Qu Y,Tian Y F,Lv Y.J.Mater.Chem.,2011,21(16):5972-5977
    24 HU Ming-Jiang,LYU Chun-Wang,YANG Shi-Bin,WANG Zhong.Chinese J.Anal.Chem.,2017,45(11):1621-1627胡明江,吕春旺,杨师斌,王忠.分析化学,2017,45(11):1621-1627
    25 Wang S,Yuan Z Q,Zhang L J,Lin Y J,Lv C.Analyst,2017,142(9):1414-1428
    26 Long Z,Ren H,Yang Y,Ouyang J,Na N.Anal.Bioanal.Chem.,2016,408(11):2839-2859
    27 Zhang R K,Hu Y F,Li G K.Anal.Chem.,2014,86(12):6080-6087
    28 Zhu Y F,Shi J J,Zhang Z Y,Zhang C,Zhang X R.Anal.Chem.,2002,74(1):120-124
    29 Zhang L J,Wang S,Yuan Z Q,Lv C.Sens.Actuators,B,2016,230:242-249
    30 RAO Zhi-Ming,XIE Jing-Yi,LIU Lin-Jie,ZENG Yu-Yun,CAI Wen-Lian.Acta Chim.Sinica,2007,65(6):532-536饶志明,谢静宜,刘林洁,曾玉云,蔡文联.化学学报,2007,65(6):532-536
    31 Liu H M,Zhang Y T,Zhen Y Z,Ma Y,Zuo W W.Luminescence,2015,29(8):1183-1187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700