用户名: 密码: 验证码:
山区复杂地形下高墩多跨连续铁路钢桁梁桥的风场特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of wind field for high-pier truss girder continuous bridges at complex terrain
  • 作者:吴广
  • 英文作者:WU Guang;China Railway and Construction Major Engineering Group Co., Ltd;
  • 关键词:风场特性 ; LES ; 山区桥梁 ; 数值模拟
  • 英文关键词:wind characteristics;;LES;;bridges in mountainous area;;numerical simulation
  • 中文刊名:CSTD
  • 英文刊名:Journal of Railway Science and Engineering
  • 机构:中国铁建大桥工程局集团有限公司;
  • 出版日期:2019-01-15
  • 出版单位:铁道科学与工程学报
  • 年:2019
  • 期:v.16;No.106
  • 基金:铁道部科研计划资助项目(2016030)
  • 语种:中文;
  • 页:CSTD201901018
  • 页数:8
  • CN:01
  • ISSN:43-1423/U
  • 分类号:135-142
摘要
以在建的蒙华铁路三门峡黄河公铁两用大桥为工程背景,研究复杂山区桥址的风参数问题。采用中国科学院地理信息的高精度地形,通过逆向工程软件拟合出桥址地形曲面。通过形成以该曲面为底面的长宽高分别为100,100和20 km的计算域并实施网格划分,采用大涡模拟(LES)数值模拟不同来流条件下计算域内的流动特征,重点分析各风向角下桥轴线上平均风特性、湍流度和风攻角等参数。数值仿真表明:与远方来流风速相比,桥轴线上部分位置处的风速增加可达到20%,但是沿桥轴线平均的风速并不存在加速效应,因此,平均风速取值无需考虑加速效应。地形效应附加的风攻角在1°~2°左右。
        In this study, the wind field at the Sanmenxia Bridge carrying both railways and highways was investigated by large eddy simulation. The high-precision terrain data at discrete locations was first obtained in Geospatial Data Cloud, and the discrete data was processed with the Imageware to form a smooth terrain surface from which the grids were generated. A computation domain with 100 km long, 100 km wide and 20 km high was employed for numerical simulation, and the wind field within the computational domain was numerically simulated with LES turbulence model. The mean wind velocity, turbulence intensity, and wind attack angle at different incoming wind condition were obtained. Compared to the incoming flow velocity, a 20% speed-up of mean wind velocity is observed at several locations along the bridge axis. However, the mean wind velocity averaged over the bridge axis don't have speedup effect, which imply no additional correction is necessary for choosing the design wind velocity. The supplemental wind attack angle is about 1°~2°.
引文
[1]项海帆.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005.XIANG Haifan.Modern theory and practice on bridge wind resistant[M].Beijing:China Communications Press,2005.
    [2]陈政清.桥梁风工程[M].北京:人民交通出版社,2005.CHEN Zhengqing.Bridge wind engineering[M].Beijing:China Communications Press,2005.
    [3]JTG/T D60-01-2004,公路桥梁抗风设计规范[S].JTG/T D60-01-2004,Wind and highway design code for highway bridges[S].
    [4]黄国庆,彭留留,廖海黎,等.普立特大桥桥位山区风特性实测研究[J].西南交通大学学报,2016,51(2):349-356.HUANG Guoqing,PENG Liuliu,LIAO Haili,et al.Field measurement study on wind characteristics at Puli Great bridge site in mountainous area[J].Journal of Southwest Jiaotong University,2016,51(2):349-356.
    [5]薛亚飞,刘志文.复杂地形桥位风场空间分布特性数值模拟[J].公路交通科技,2016,33(5):66-72.XUE Yafei,LIU Zhiwen.Numercial simulation of spacial distribution feature of wind field over bridge site at complex terrain[J].Journal of Highway and Transportation Research and Development,2016,33(5):66-72.
    [6]胡朋,李永乐,廖海黎.山区峡谷桥址区地形模型边界过渡段形式研究[J].空气动力学学报,2013,31(2):231-238.HU Peng,LI Yongle,LIAO Haili.Shape of boundary transition section for mountains-gorge bridge site terrain model[J].Acta Aerodynamica Sinica,2013,31(2):231-238.
    [7]LIU Y S,MIAO S G,ZHANG C L,et al.Study on micro-atmospheric environment by coupling large eddy simulation with mesoscale model[J].Journal of Wind Engineering&Industrial Aerodynamics,2012,S107-108(8):106-117.
    [8]Uchida T,Ohya Y.Development of the local wind field simulator RIAM-COMPACT:Wind field assessmentand real time simulation(numerical prediction technique of airflow over complex terrain)[J].Journal of Japan Society of Fluid Mechanics,2003,22:417-428.
    [9]Uchida T,Ohya Y.Application of LES technique to diagnosis of wind farm by using high resolution elevation data[J].Jsme International Journal,2006,49(3):567-575.
    [10]LIU Zhenqing,Ishihara T,Tanaka T,et al.LES study of turbulent flow fields over a smooth 3-D hill and a smooth2-D ridge[J].Journal of Wind Engineering&Industrial Aerodynamics,2016,153:1-12.
    [11]LIU Zhenqing,Ishihara T,He X,et al.LES study on the turbulent flow fields over complex terrain covered by vegetation canopy[J].Journal of Wind Engineering&Industrial Aerodynamics,2016,155:60-73.
    [12]李永乐,蔡宪棠,唐康,等.深切峡谷桥址区风场空间分布特性数值模拟研究[J].土木工程学报,2011,44(2):116-122.LI Yongle,CAI Xiantang,TANG Kang,et al.Study of spatial dietribution feature of wind fields over bridge site with a deep-cutting gorge using numerical simulation[J].China Civil Engineering Journal,2011,44(2):116-122.
    [13]于涛.山区峡谷风特性的数值模拟与现场实测的对比研究[D].湘潭:湖南科技大学,2014.YU Tao.Study on Wind-environment numerieal simulation and field measurement about canyon[D].Xiangtan:Hunan University of Science&Technology,2014.
    [14]刘熠.山区峡谷桥址处风场特性实测研究与数值模拟[D].长沙:长沙理工大学,2014.LIU Yu.Mountain valley bridge wind characteristics field measurement study and numerical simulation[D].Changsha:Changsha University of Science and Technology,2014.
    [15]沈炼,韩艳,蔡春声,等.山区峡谷桥址处风场实测与数值模拟研究[J].湖南大学学报(自科版),2016,43(7):16-24.SHEN Lian,HAN Yan,CAI Chunsheng,et al.Experiment and numerical simulation for wind field of a long-span suspension bridge located in mountainous canyon[J].Journal of Hunan University(Natural Sciences),2016,43(7):16-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700